
9: POLYMORPHISM

Programming Technique II

(SCSJ1023)

Jumail Bin Taliba
Department of Software Engineering, FC, UTM, 2018

9.1: Introduction to Polymorphism

What is Polymorphism?

 Polymorphism is the ability of objects to perform the same
actions differently.

Insect

Grasshoppers move by jumping

Insects have the ability to move from one point

to another.

However, the way they perform their

movement are different

Ant

Example 1:

Grasshopper

Ants move by crawling

Shape

All geometrical shapes have the characteristic regarding area. However,

calculating the area is different from one shape to another.

Circle Rectangle

Example 2:

r

area = πr2

h

area = w × h

w

What is Polymorphism?

What is Polymorphism?

 Same actions but different behaviors? What does this mean
in programming context?

 It is the same action because the classes use the same name
(including parameters) for the methods.

 It is different behavior because the code in the method
definition is different one to another.

Example:

Same actions: Circle and Rectangle use the same name for the
method calculating the area, i.e., getArea()

What is Polymorphism?
Same actions but different behaviors

What is Polymorphism?
Same actions but different behaviors

Example:

Different behaviors: the code implementing the calculation of area inside
each of the methods getArea is different, for the classes Circle
and Rectangle.

9.2: Polymorphisms and Virtual
Member Functions (Methods)

 Overloaded methods: two or more methods share the same
name but parameters are different. (either one of below)
 Different data types of parameters

 Different number of parameters

 Redefined methods: child or derived classes define methods
with exactly the same name and parameters as used in the
parent or base class.

 Overridden methods: it is similar to redefined methods
except they are dynamically bound.

Terminology

Terminology
Overloaded vs Redefined vs Overridden Methods

Example:

Overloaded
methods: set

Redefined
method: print

Overridden
method: whoAmI

Virtual Member Functions (Methods)

 Virtual methods are methods that are dynamically bound. i.e. the binding
is decided at runtime.

 Virtual methods are defined with the keyword virtual:
Example

virtual void print()const {...}

 Methods defined without the keyword virtual are called non-virtual
methods and C++ uses static binding for them, i.e., the binding is decided
at compile time.

 At runtime, C++ decides to which version of the method should be bound
by looking at the type of object making the call.

 The method name in an object is used for reference only.

 The method needs to be bound to code (i.e. the definition) in
order to perform its actions.

 Method binding can occur in two situations:
 Pre-bound, before the program runs => static binding

 During the execution of program => dynamic binding

Static vs Dynamic Binding

 Static binding is about binding “at compile time”.
 The code which the method to be bound with is decided by the

compiler.

 Methods that are statically bound are constant or unchanged
throughout the execution of programs. Thus term static
binding.

 All methods (except overridden methods) are statically
bound (e.g., redefined, overloaded, constructors,
destructors, etc.)

Static vs Dynamic Binding
Static Binding

 Dynamic binding applies to overridden methods.
 This is done by specifying the methods as virtual (in the parent

class)

 Methods that are dynamically bound can change from one
code to another. Thus term dynamic binding.

 Dynamic binding is about binding “at runtime”.
 The code which the method to be bound with is decided by the

program at runtime (not by the compiler).

Static vs Dynamic Binding
Dynamic Binding

Static vs Dynamic Binding
Problems with Static Binding

Shape area = 0
Circle area = 0
Rectangle area = 0

Program output:

Output error for the area
of circle and rectangle

 The method getArea associated with p is pre-bound at
compile time (i.e. static binding) and remain unchanged at
runtime.

 Thus, every time calling to the method getArea from p
(lines 40, 43 and 46) always invoke the getArea of class
Shape (because p is of type Shape pointer). As a result
all the output for the area are 0.

Static vs Dynamic Binding
Problems with Static Binding

 This problem can be solved using dynamic binding.

Static vs Dynamic Binding
The Solution with Dynamic Binding

Shape area = 0
Circle area = 314
Rectangle area = 12

Program output:

Specify as virtual

to use dynamic binding

vrtual is only placed in the

parent class. The method

becomes virtual in all child
classes automatically.

 The method getArea associated with p is now bound at
runtime (not pre-decided anymore by the compiler)

Static vs Dynamic Binding
The Solution with Dynamic Binding

 At runtime, C++ determines the type of object making the
call, and binds the method to the appropriate version of
the function.
 At line 42: p is pointing to a Circle object, c. Thus, the method
getArea associated with p is now bound to the getArea of
the class Circle

 At line 45: p is pointing to a Rectangle object, r. Thus, the
method getArea associated with p is now bound to the
getArea of the class Rectangle

1. The method must be able to be dynamically bound
 This is done by making it as a virtual method.

 Place the keyword virtual only in the parent class.

Requirements for the Implementation of
Polymorphism

Place virtual for the method to

be made polymorphic. This will

allow the method to be dynamically
bound

The class Circle overrides the
method getArea

Requirements for the Implementation of
Polymorphism

2. The child classes need to override the polymorphic
methods.

The class Circle overrides the
method getArea

Requirements for the Implementation of
Polymorphism

3. Must use parent class pointers.

The pointer must be of type parent
class.

Any object of child classes or the

parent class can fit here. A circle or
rectangle is a kind of shape.

Parameter p can accept any address

of object of Shape, Circle, or

Rectangle, because it is of type

Shape pointer.

Area = 0
Area = 314
Area = 12

Program output:

Requirements for the Implementation of
Polymorphism

 If you want to use a list, you also need to use pointers, i.e. arrays of parent class
pointers.
 Note that each element of the array is a pointer not an object.

The list is an array of parent
class pointers.

We use arrow operator here

because each element of the
array is a pointer.

Area = 0
Area = 314
Area = 12

Program output:

Example:
Note: for the program below, the function displayArea from previous program is excluded

Each element of the array

is a pointer of shape.

Circle, c and rectangle, r

can fit here because they
are also type of shape.

Parent Class Pointers

 The pointer must be declared as of parent class pointer so that any object of the
child classes and the parent class can fit. In other words to make it more general.

Example:

We can pass the address of any object of class Circle (c), Rectangle (r)
and Shape (s) to the function
displayArea,
because objects c, r and s
are all of type Shape.

Parent Class Pointers

 However, parent class pointers only knows about public members of the parent class.

 The pointer cannot be used to refer to any member in the child classes

Example:

The pointer p is

pointing to a Circle

object, c

This is fine because
class Shape has the

method getArea

This produces an error because class
Shape does not have the method

printRadius. Instead, this method
belongs the child class, Circle

Virtual Destructors

 By default destructors are bound statically (i.e., non-virtual)

 If a class could ever become a parent class, it is better to specify its
destructor virtual to allow dynamic binding.

Example:
The following program shows the effect with non-virtual destructors.

Destroy Parent object

Program output:

Although ptr is pointing to a Child object

(created at Line 37), deleting the object (Line
39) will call to the Parent’s destructor

because the compiler performs static binding
to the destructor.

Virtual Destructors
Example:
The previous program is modified by making the destructor virtual

Destroy Child object
Destroy Parent object

Program output:

Now, deleting the object (Line 39) will call to
the Child’s destructor because the destructor

is specified virtual (Line 13). This allows

C++ to perform dynamic binding to the
destructor.

9.3: Abstract Base Classes and Pure
Virtual Functions

Pure Virtual Methods and Abstract Parent
Classes

 A pure virtual method is a method in a parent class declared
as virtual but without any definition.

A pure virtual method is indicated by the = 0 as
shown below:

virtual void methodName() = 0;

 Child classes must override pure virtual methods.

Pure Virtual Methods and Abstract Parent
Classes

 An abstract class is a class which cannot have any objects.
 We cannot create an instance from this class.

 It serves as a basis for child classes that may have objects.

 An abstract class is created when a class contains one or
more pure virtual methods.

Example:
Turning the class Shape to be an abstract class by making the method getArea pure virtual

Now, we cannot create any object from the class Shape.

Thus the following code would result in an error.
Shape s;

