

Assignment-1

Group Member	Matric no.
S M TASHDID	A20EC4048
HASSAN	
Hibban Kamil	A20EC5022
Luhung Adji	A19EC0246

 Question 1: Let the universal set be the set R of all real numbers and let A= $\{x \in R \mid 0 < x \le 2\}$, B= $\{x \in R \mid 1 \le x < 4\}$ and C= $\{x \in R \mid 3 \le x < 9\}$. Find each of the following:

A=
$$\{x \in R \mid 0 < x \le 2\} = (1,2)$$

B= $\{x \in R \mid 1 \le x < 4\} = (1,2,3)$
C= $\{x \in R \mid 3 \le x < 9\} = (3,4,5,6,7,8)$

- a) A \cup C = (1,2) \cup (3,4,5,6,7,8)
- =(1,2,3,4,5,6,7,8)
- b) $(A \cup B)' = ((1,2) \cup (1,2,3))'$
- $= (1,2,3)' = \{x \in R \mid x < 1 \& x > 3\}$
- c) A' \cup B' = (1,2)' \cup (1,2,3)'
- $= \{x \in R \mid x < 1 \& x > 2\} \cup \{x \in R \mid x < 1 \& x > 3\}$
- $= \{x \in R \mid x < 1 \& x > 3\}.$

 Question 2: Draw Venn diagrams to describe sets A, B, and C that satisfy the given conditions:

A) A \cap B = \emptyset , A \subseteq C, C \cap B \neq \emptyset

B) $A \subseteq B$, $C \subseteq B$, $A \cap C \neq \emptyset$

C) $A \cap B \neq \emptyset$, $B \cap C \neq \emptyset$, $A \cap C = \emptyset$, $A \not\subset B$, $C \not\subset B$

Question 3: Given two relations S and T from A to B,

S ∩ T = {(x,y) ∈ A×B | (x,y) ∈ S and (x,y) ∈
 T}

- S ∪ T = {(x,y) ∈ A×B | (x,y) ∈ S or (x,y) ∈
 T}
- Let A= {-1, 1, 2, 4} and B= {1,2} and defined binary relations S and T from A to B as follows:
- For all $(x,y) \in A \times B$, $x \mid S \mid y \leftrightarrow |x| = |y|$
- For all $(x,y) \in A \times B$, $x \top y \leftrightarrow x y$ is even
- State explicitly which ordered pairs are in A×B, S, T, S ∩ T, and S ∪ T.

Ans = Here,

$$A \times B = \{(-1,1), (-1,2), (1,1), (1,2), (2,1), (2,2), (4,1), (4,2)\}$$

$$S = \{(-1,1), (1,1), (2,2)\}$$

$$T = \{(-1,1), (1,1), (2,2), (4,2)\}$$

$$S \cap T = \{(-1,1), (1,1), (2,2)\}$$

$$S \cup T = \{(-1,1), (-1,2), (1,1), (1,2), (2,1), (2,2), (4,1), (4,2)\}$$

Discrete Group Assignment

4.

р	q	-p^q	-p^q	-((-	(p^q)	Ы
				p^q)		
				V(-		
				p^-		
				q))		
Т	T	F	F	T	–	Т

Т	F	L	F	T	F	T
F	T	Τ	F	F	F	F
F	F	F	Т	F	F	F

De Morgan's Law

$$R1 = \{(x,y) | x+y < =6\}$$

$$R1=\{(1,1); (1,2); (1,3); (1,4); (1,5); (2,1);$$

$$(2,2); (2,3); (2,4); (3,1); (3,2); (3,3); (4,1);$$

reflexive, symmetric, Transitive

R2=
$$\{(x,y)|y>z\}$$

R2= $\{((2,1); (3,1); (3,2); (3,3); (4,1); (4,2); (4,3); (5,1)); (5,2)); (5,3); (5,4)\}$
b)

- c) yes it is. R1 is equivalent relation. (reflexive, symmetric, Transitive)
- d) yes it is. R2 is Partial order relation. reflexive, asymmetric, Transitive)

6.

a) Matrix of relation R1 U R2.

R1 Ç R2 0 0 0

010

101

7. If f :R→ R and g:R→ R are both one-to-one, is f + g also one-to-one?
Justify your answer.

Answer:

If f(x) = x and g(x)=-x is one to one.

Ex:

$$f(1) = 1 g(1) = -1$$

 $f(2) = 2 g(2) = -2$
Etc

But, is f+g also one to one?

$$(f+g): R \rightarrow R$$

(f+g)(x) = f(x) + g(x) for all real number is 0 Ex:

$$(f+g)(1) = f(1) + g(1)$$

= 1 + (-1) = 0
 $(f+g)(2) = f(2) + g(2)$
= 2 + (-2) = 0
Etc

So, this shows that f+g is not one to one

8. With each step you take when climbing a staircase, you can move

up either one stair or two stairs. As a result, you can climb the entire

staircase taking one stair at a time, taking two at a time, or taking a

combination of one- or two-stair increments. For each integer n≥1, if

the staircase consists of n stairs, let cn be the number of different

ways to climb the staircase. Find a recurrence relation for c1, c2,,cn.

Answer:

When n=1, c(1)=1

When n=2, c(2)=2

So its must greater than 1 or 2. When n>=3, the ways of climbing a staircase can divided into two groups based on the last step taken is either a single stair or two stairs together.

If the last step is a single stair, the number of ways is c(n-1). If the last step is two

stairs together, there are c(n-2) ways. Therefore, c(n)=c(n-1)+c(n-2).

Result:

$$c(1) = 1$$

$$c(2) = 2$$

$$c(n) = c(n-1) + c(n-2)$$
 when $n \ge 3$

9. The Tribonacci sequence (tn) is defined by the equations,

$$t0 = 0$$
, $t1 = t2 = 1$, $tn = tn-1 + tn-2 + tn-3$ for all $n \ge 3$.

- a) Find t7.
- b) Write a recursive algorithm to compute tn, n ≥3.

Answer:

a) we start from t3

$$t3 = t3-1 + t3-2 + t3-3 = t2 + t1 + t0 = 1 + 1 + 0 = 2$$

```
t4 = t4-1 + t4-2 + t4-3 = t3 + t2 + t1 = 2 + 1
+ 1 = 4
t5 = t5-1 + t5-2 + t5-3 = t4 + t3 + t2 = 4 + 2
+ 1 = 7
t6 = t6-1 + t6-2 + t6-3 = t5 + t4 + t3 = 7 + 4
+2 + = 13
t7 = t7-1 + t7-2 + t7-3 = t6 + t5 + t4 = 13 + 7
+4 = 24
t7 = 24
b) //Fibonacci Series using Recursion
#include<bits/stdc++.h>
using namespace std;
int t(int n) t0 = 0, t1 = t2 = 1
{
if (n \ge 3)
return n;
return t(n-1) + t(n-2) + t(n-3);
```