SECI1013: DISCRETE STRUCTURE

2020/2021 - Semester 1

ASSIGNMENT 4

- 1. Let G be a graph with $V(G) = \{1, 2, ..., 10\}$, such that two numbers 'v' and 'w' in V(G) are adjacent if and only if $|v w| \le 3$. Draw the graph G and determine the numbers of edges, e(G).
- 2. Model the following situation as graphs, draw each graphs and gives the corresponding adjacency matrix.
 - (a) Ahmad and Bakri are friends. Ahmad is also friends with David and Chong. David, Bakri and Ehsan all friends.

(Note that you may use the representation of $A=Ahmad;\ B=Bakri;\ C=Chong;\ D=David;\ E=Ehsan)$

- (b) There are 5 subjects to be scheduled in the exam week: Discrete Mathematics (DM), Programming Technique (PT), Artificial Intelligence (AI), Probability Statistic (PS) and Information System (IS). The following subjects cannot be scheduled in the same time slot:
 - i. DM and IS
 - ii. DM and PT
 - iii. AI and PS
 - iv. IS and AI
- 3. Show that the two drawing represent the same graph by labeling the vertices and edges of the right-hand drawing to correspond to left-hand drawing.

4. Find the adjacency and incidence matrices for the following graphs.

5. Determine whether the following graphs are isomorphic.

 u_1 u_2 u_4 f_3 u_4 f_4 u_4 f_4 u_4 u_4

 G_2

b)

 G_I

 p_1 p_2 p_3 p_4 p_5 p_5 p_5 p_7 p_7 p_7 p_7 p_7 p_8 p_9

6. In the graph below, determine whether the following walks are trails, paths, closed walks, circuits/cycles, simple circuits or just walks.

- a) $v_0 e_1 v_1 e_{10} v_5 e_9 v_2 e_2 v_1$
- b) $v_4 e_7 v_2 e_9 v_5 e_{10} v_1 e_3 v_2 e_9 v_5$
- c) v_2
- d) $v_5 e_9 v_2 e_4 v_3 e_5 v_4 e_6 v_4 e_8 v_5$
- e) $v_2 e_4 v_3 e_5 v_4 e_8 v_5 e_9 v_2 e_7 v_4 e_5 v_3 e_4 v_2$
- f) $v_3 e_5 v_4 e_8 v_5 e_{10} v_1 e_3 v_2$

7. Consider the following graph.

- a) How many paths are there from v_1 to v_4 ?
- b) How many trails are there from v_1 to v_4 ?
- c) How many walks are there from v_1 to v_4 ?
- 8. Determine which of the graphs in (a) (b) have Euler circuits. If the graph does not have a Euler circuit, explain why not. If it does have a Euler circuit, describe one.

9. For each of graph in (a) - (b), determine whether there is an Euler path from u to w. If there is, find such a path.

- 10. For each of graph in (a) (b), determine whether there is Hamiltonian circuit. If there is, exhibit one.
- 11. How many leaves does a full 3-ary tree with 100 vertices have?

12. Find the following vertex/vertices in the rooted tree illustrated below.

- a) Root
- b) Internal vertices
- c) Leaves
- d) Children of n
- e) Parent of e
- f) Siblings of k
- g) Proper ancestors of q
- h) Proper descendants of b
- 13. In which order are the vertices of ordered rooted tree in **Figure 1** is visited using *preorder*, *inorder* and *postorder*.
- 14. Find the minimum spanning tree for the following graph using Kruskal's algorithm.

15. Use Dijsktra's algorithm to find the shortest path from **M** to **T** for the following graph.

