

SCHOOL OF COMPUTING Faculty of Engineering

SUBJECT:

DISCRETE STRUCTURE (SECI1013-03)

TOPIC: ASSIGNMENT 4

NO	STUDENT NAME	MATRIX NO
1	NURFARRAHIN BINTI CHE ALIAS	A20EC0121
2	GOO YE JUI	A20EC0191
3	ONG HAN WAH	A20EC0129
4	QAISARA BINTI ROHZAN	A20EC0133

LECTURER'S NAME: DR. NOR AZIZAH ALI

DATE OF SUBMISSION: 22 DECEMBER 2021

SECI1013: DISCRETE STRUCTURE

2020/2021 – Semester 1

ASSIGNMENT 4

1. Let G be a graph with $V(G) = \{1, 2, ..., 10\}$, such that two numbers 'v' and 'w' in V(G) are adjacent if and only if $|v - w| \le 3$. Draw the graph G and determine the numbers of edges, E(G).

$$V(G) = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

- 2. Model the following situation as graphs, draw each graphs and gives the corresponding adjacency matrix.
 - (a) Ahmad and Bakri are friends. Ahmad is also friends with David and Chong. David, Bakri and Ehsan all friends.

(Note that you may use the representation of A= Ahmad; B = Bakri; C = Chong; D = David; E= Ehsan)

$$A_G = \begin{bmatrix} A & B & C & D & E \\ A & 0 & 1 & 1 & 1 & 0 \\ B & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ D & 1 & 1 & 0 & 0 & 1 \\ E & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

- (b) There are 5 subjects to be scheduled in the exam week: Discrete Mathematics (DM), Programming Technique (PT), Artificial Intelligence (AI), Probability Statistic (PS) and Information System (IS). The following subjects cannot be scheduled in the same time slot:
 - i. DM and IS 0 represents subjects that cannot be scheduled in the same time
 - ii. DM and PT 1 represents subjects that can be scheduled in the same time
 - iii. AI and PS
 - iv. IS and AI

	DM	PT	' AI	PS	IS
DM	Γ 0	0	1	1	07
PT	0	0	1	1	1
AI	1	1	0	0	0
PS	1	1	0	0	1
DM PT AI PS IS	L_0	1	0	1	0]

3. Show that the two drawing represent the same graph by labeling the vertices and edges of the right-hand drawing to correspond to left-hand drawing.

4. Find the adjacency and incidence matrices for the following graphs.

5. Determine whether the following graphs are isomorphic.

Graph G_1 has a vertex with a degree of 3, 3 vertices with a degree of 2 and a vertex with a degree of 1. Meanwhile Graph G_2 has a vertex with a degree of 3, 3 vertices with a degree of 2 and a vertex with a degree of 1.

Therefore, Graph G_1 and G_2 are isomorphic. This is because both graphs have the same degree of vertices.

b)

Graph H_1 has a vertex with a degree of 5, a vertex with a degree of 3, a vertex with a degree of 2 and finally 2 vertices with a degree of 1. Meanwhile Graph H_2 has 3 vertices with a degree of 3, a vertex with a degree of 2 and lastly a vertex with a degree of 1.

Therefore, Graph H_1 and H_2 are not isomorphic. This is because both graphs have different degree of Vertices.

6. In the graph below, determine whether the following walks are trails, paths, closed walks, circuits/cycles, simple circuits or just walks.

a) $v_0^e_1v_1^e_{10}v_5^e_9v_2^e_2v_1$	Trail
b) ${}^{v}4^{e}7^{v}2^{e}9^{v}5^{e}10^{v}1^{e}3^{v}2^{e}9^{v}5$	Walk
c) v ₂	Closed walk
$d) v_5 e_9 v_2 e_4 v_3 e_5 v_4 e_6 v_4 e_8 v_5$	Circuit
e) $v_2 e_4 v_3 e_5 v_4 e_8 v_5 e_9 v_2 e_7 v_4 e_5 v_3 e_4 v_2$	Closed Walk
f) vevevevev f) 3 5 4 8 5 10 1 3 2	Path

7. Consider the following graph.

- a) How many paths are there from v_1 to v_4 ? 3 paths
- b) How many trails are there from v_1 to v_4 ? 9 trails
- c) How many walks are there from v_1 to v_4 ?
- 8. Determine which of the graphs in (a) (b) have Euler circuits. If the graph does not have a Euler circuit, explain why not. If it does have a Euler circuit, describe one.

For graph (a), it is a Euler circuit. This is because all the vertices have a positive even degree. Besides that, all the edges are used exactly once, whereas for the vertex v_5 is used two times in $(v_1, e_1, v_2, e_2, v_5, e_3, v_2, e_4, v_3, e_5, v_4, e_6, v_5, e_7, v_4, e_8, v_1)$.

For graph (b), it is not a Euler circuit. This is because not all vertex in the graph has a positive even degree

9. For each of graph in (a) - (b), determine whether there is an Euler path from u to w. If there is, find such a path.

For graph (a), it has a Euler path. The path goes like u, v_1 , v_0 , v_7 , u, v_2 , v_3 , v_4 , v_2 , v_6 , v_5 , v_6 , v_4 , v_8 . Whereas for graph (b), there is no Euler path.

10. How many leaves does a full *3-ary* tree with 100 vertices have?

n = 100 vertices
m = 3

$$1 = \frac{(m-1)n+1}{m} = \frac{(3-1)100+1}{3} = \frac{(2)101}{3} = \frac{202}{3} = 67$$

11. Find the following vertex/vertices in the rooted tree illustrated below.

Figure 1

- a) Root = a
- b) Internal vertices = a, b, d, e, g, h, j, n
- c) Leaves = c, f, I, k, l, m, n, o, p, q, r, s
- d) Children of n = r, s
- e) Parent of e = b
- f) Siblings of k = l, m
- g) Proper ancestors of q = a, d, j
- h) Proper descendants of b = e, k, l, m

12. In which order are the vertices of ordered rooted tree in **Figure 1** is visited using *preorder*, *inorder* and

postorder.

Preorder: a, b, e, k, l, m, f, g, n, r, s, c, d, h, o, i, j, p, q Inorder: k, e, l, m, b, f, r, n, s, g, a, c, o, h, d, i, p, j, q Postorder: k, l, m, e, f, r, s, n, g, b, c, o, h, i, p, q, j, d, a

13. Find the minimum spanning tree for the following graph using Kruskal's algorithm.

Edge	Weight	Will adding edge make a circuit?	Action Taken	Cumulative weight of subgraph
<i>e</i> ₁ - AB	1	No	Added	1
e ₂ - GH	1	No	Added	2
e ₃ - BC	2	No	Added	4
e ₄ - AF	3	No	Added	7
e ₅ - BF	4	Yes	Not Added	7
e ₆ - CD	4	No	Added	11
e ₇ - BG	5	No	Added	16
e ₈ - CG	6	Yes	Not Added	16
e ₉ - DH	6	Yes	Not Added	16
e ₁₀ - DE	7	No	Added	23
e ₁₁ - DG	7	Yes	Not Added	23
e ₁₂ - FG	8	Yes	Not Added	23
e ₁₃ - EH	8	Yes	Not Added	23

14, Use Dijsktra's algorithm to find the shortest path from \mathbf{M} to \mathbf{T} for the following graph.

Iteration	S	N	L(M)	L(N)	L(O)	L(P)	L(Q)	L(R)	L(S)	L(T)
0	{}	$\{M,N,O,P,Q,R,S,T\}$	0	∞	8	∞	∞	∞	∞	∞
1	{M}	$\{N,O,P,Q,R,S,T\}$	0	4	8	2	∞	5	∞	∞
2	{M,P}	$\{N,O,Q,R,S,T\}$	0	4	8	2	6	5	5	∞
3	$\{M,P,N\}$	$\{O,Q,R,S,T\}$	0	4	10	2	6	5	5	∞
4	$\{M,P,N,R\}$	{O,Q,S,T}	0	4	7	2	6	5	5	6
5	$\{M,P,N,R,S\}$	{O,Q,T}	0	4	7	2	6	5	5	6
6	$\{M,P,N,R,S,T\}$	{O,Q}	0	4	7	2	6	5	5	6

Shortest path: $M \rightarrow R \rightarrow T$ Shortest length: 6