
23/9/2019

1

SCSV3213

FUNDAMENTAL OF IMAGE PROCESSING

MATLAB TUTORIAL

Tutorial 1

Dr. Md Sah Hj Salam

Acknowledgements

• Slides Materials comes from below sources
and re-organized for class suitability by Dr. Md
Sah Hj Salam
– Matlab helps

– An Introduction to Matlab by John Sebeson from DeVry University lecture on

matlab

– MATLAB Tutorial by Qian Wang, Penn State University

– Introduction to MATLAB slides by Markus Kuhn, university of Cambridge.

OUTLINE

• Intro to matlab
– The MATLAB System / Environment

• The basic MATLAB programming
– Fundamental expression

– Matrix operation

• Use Matlab to solve linear equations

• M – file and function

• Conditional and Loop

• Image Processing Tools

1. MATLAB SYSTEM AND
ENVIRONMENT

What is MATLAB?

• MATLAB stands for MATrix LABoratory.

• MATLAB is a high-performance language for
technical computing.
– Math and computation

– Algorithm development (optimized for DSP)

– Data acquisition

– Modeling, simulation, and prototyping

– Data analysis, exploration, and visualization

– Scientific and engineering graphics

– Application development, including graphical user
interface building

23/9/2019

2

What MATLAB is NOT .. Why Learn and Use MATLAB?

• Extensive built-in commands for scientific and
engineering mathematics

• Easy way to generate class demonstrations
and test examples

• Simple and intuitive programming for more
complex problems

• Standard and widely-used computational
environment with many features, extensions,
and links to other software.

MATLAB in DSP Product Development

Develop and Test

Algorithms in

MATLAB

SIMULINK

Simulation

Code

Composer

DSP Processor

Platform

MATLAB + PC = DSP Processor!! (just less efficient)

Why Learn MATLAB (and DSP)?

• Digital Signal Processing (DSP) is the
dominant technology today, and into the
future, for small-signal electronic systems
(i.e., just about everything)

• MATLAB has become one of the standard
design environments for DSP engineering

• Students need to be literate and skilled in
this environment: knowledgeable in both
DSP and MATLAB

The MATLAB System

• Development Environment.
– MATLAB desktop
– Editor and debugger for MATLAB programs (“m-files”)
– Browsers for help, built-in and on-line documentation
– Extensive demos

• The MATLAB Mathematical Function Library.
– Elementary functions, like sum, sine, cosine, and complex arithmetic
– More sophisticated functions like matrix inverse, matrix eigenvalues, Bessel

functions, and fast Fourier transforms.
– “Toolboxes” for special application areas such as Signal Processing

• The MATLAB Language.
– “Programming in the small" to rapidly create quick and dirty throw-away

programs, or
– “Programming in the large" to create large and complex application programs.

• Graphics.
– 2D and 3D plots
– Editing and annotation features

• The MATLAB Application Program Interface (API).
– A library that allows you to write C and Fortran programs that interact with

MATLAB.

MATLAB Development Environment
(Workspace)

23/9/2019

3

DEMO 1 :
OPENING MATLAB ENVIRONMENT

• Open your PC

• Go the start button

• Choose Matlab program.

• See the environment and find the windows
for ..
– Command windows

– History

– Workspace

– Editors

– Current folder

MATLAB “Help” Utilities

• MATLAB is so rich that ‘help’ is essential

– Command name and syntax

– Command input/output parameters

– Usage examples

• Help command
– help command_name

– help [partial_name] tab

• Help documents

• Demos

MATLAB Function Library
(A Subset)

• matlab\general - General purpose commands.

• matlab\ops - Operators and special characters.

• matlab\lang - Programming language constructs.

• matlab\elmat - Elementary matrices and matrix manipulation.

• matlab\elfun - Elementary math functions.

• matlab\specfun - Specialized math functions.

• matlab\matfun - Matrix functions - numerical linear algebra.

• matlab\datafun - Data analysis and Fourier transforms.

• matlab\polyfun - Interpolation and polynomials.

• matlab\funfun - Function functions and ODE solvers.

• matlab\sparfun - Sparse matrices.

• matlab\scribe - Annotation and Plot Editing.

• matlab\graph2d - Two dimensional graphs.

• matlab\graph3d - Three dimensional graphs.

• matlab\specgraph - Specialized graphs.

• matlab\graphics - Handle Graphics.

Some Elementary Functions

• Exponential.

• exp - Exponential.

• expm1 - Compute exp(x)-1 accurately.

• log - Natural logarithm.

• log1p - Compute log(1+x) accurately.

• log10 - Common (base 10) logarithm.

• log2 - Base 2 logarithm and dissect floating point number.

• pow2 - Base 2 power and scale floating point number.

• realpow - Power that will error out on complex result.

• reallog - Natural logarithm of real number.

• realsqrt - Square root of number greater than or equal to zero.

• sqrt - Square root.

• nthroot - Real n-th root of real numbers.

• nextpow2 - Next higher power of 2.

Some Specialized Functions

Number theoretic functions.

factor - Prime factors.

isprime - True for prime numbers.

primes - Generate list of prime numbers.

gcd - Greatest common divisor.

lcm - Least common multiple.

rat - Rational approximation.

rats - Rational output.

perms - All possible permutations.

nchoosek - All combinations of N elements taken K at a time.

factorial - Factorial function. 2. BASIC MATLAB PROGRAMMING

23/9/2019

4

Fundamental Expression /
Operation

• MATLAB uses conventional decimal notion
• Builds expression with usual arithmetic

operators and precedence rules :

Fundamental Expression /
Operation (cont)

Arithmetic Expression Priority

• Operation priorities is similar to c arithmetic

1. Brackets

2. Powers

3. * and / working from left to right

4. + and - working from left to right

• Example:

2+3/(4*5)  2+ 3/20  2+0.150  2.150

2 + (3/4) * 5  2 + 0.75 * 5  2 + 3.750 
5.750

Suppressing Output

• The result of an expression can be hidden (not display) on
the command window by terminating the expression with
semi-colon (;).

• We can also place several statements in one line separated
by comma

• Example ..

Exercise :

• Find the answer for the following
expression by hand and then compare
your answer using MATLAB.

Build in Functions

• MATLAB offer build in functions for
easiness in calculation.

• For examples
– cos, sin, acos, asin, sqrt, exp, log and more

• If you want to know the usage of the
function just type help <the name of the
function> in command windows)

>> help asin

• Explore to know more..

23/9/2019

5

Matrix operations

• Matrix operations are fundamental to MATLAB.

• Within a matrix, columns are separated by space
and rows are separated by semicolon (;).

• For example:

Matrix Operations (continue)

• matrix in MATLAB can do operations like

– + addition

– - subtraction

– * multiplication

– ^ power

– ‘ transpose

Exercise.

1. create the following matrix
A = B =

1 2 3 2 4 6
4 5 6 8 10 12
7 8 9 14 16 18

2. Do these operations on the matrix. See the output
i. A + B ii. A * B
iii. B ‘ iv. A^B
v. A^2

Question ?

• What are the different between

– A * B and A*2 in previous example.

• Assuming A = [1 2 3; 4 5 6; 7 8 9] and B = [3 2;
5 4; 7 6]

• Are these operation valid

– i . A * B

– ii. B * A

– iii. A*3

– iv. B*2

BUILDING MATRIX FUNCTIONS

• There are build in matrix functions for examples ..

BUILDING MATRIX FUNCTIONS (cont)

23/9/2019

6

• Matrices can be build from block. For example.

• Using previous definition of Matrices A,B and C

• >> D = [A B C] will result to

BUILDING MATRIX FUNCTIONS (cont)

 The operation applies if the they have the same rows.

Colon Notation “ : “

• Colon notation can be used for various
operation of matrices.

Colon Notation “ : “

• We can also used colon for retrieving
elements in a Matrix. For example..

Colon Notation “ : “ (more
examples)

Colon Notation “ : “ (more
examples)

More examples on matrices

23/9/2019

7

More examples on matrices Exercise 1

Based on matrix B write in a single line MATLAB

command to

• Find the sum of column 5 and 7 of B

• Display the last row of B

EXERCISE 2

exercise

3. SOLVING LINEAR EQUATION

System of Linear Equations

• A general system of linear equation can be
expressed in term of coefficient matrix A.

Ax = b component wise as

 if A is (n x n) equations, then x can be find using this
. or x is the product of inverse A and b.

 In MATLAb function inv can be used for inverse function

-1
x = 𝐴−1𝑏

Solve this linear equation

Find X and Y given ..
X + Y = 5;
2X + Y = 7;

Find X and Y and Z given ..
2X + 3Y + 4Z = 20;
10X + 5Y + 3Z = 30;

X + 5Y + 3Z = 10;

>> A =[1 1 ;2 1]; C = [5 7];

>> inv(A)*C'

ans =

2

3

>> Z = [2 3 4;10 5 3; 1 5 3]; Y = [20 30 10];

>> inv(Z)*Y'

ans =

2.2222

-1.4141

4.9495

23/9/2019

8

4. M-FILE AND FUNCTION

M - File
• Last Time we do all the scripting in

command windows.
– Run at once

– Not saved for later use

• MATLAB provide a platform for us to
write code and save it.

• M-files are macros of MATLAB commands
that are stored as ordinary text files with
the extension "m", that is filename.m

• We can write command in M-File just like
we write in command window or create
function in M-File to be called.

Example 1 :

• Open your MATLAB environment.
• Open editor window and write these code.
• Save it as Test1.m

disp('This is a Test');

reply = input(‘ Y/N [Y] ?: ', 's');

if isempty(reply)

reply = 'Y';

end

reply

1

2

3

4

5

6

Understand the code

• Identify the used of functions in the code

– disp

– input

– isempty

• The code shows the use of conditional
statement if … end (noticed the syntax)

5. CONDITIONAL AND LOOP

Conditional statement

• if .. end

• if ..else ..end

 if .. elseif .. end

23/9/2019

9

Exercise1 : conditional

• Rewrite the code in example 1 so that it
will ask user whether he like morning
class. If [Y] display “ I like ”, if [N] “ I hate”
else or no answer “ehmm” ..

Example 2.

x = -1:.05:1;

for n = 1:2:8

subplot(4,2,n), plot(x,sin(n*pi*x))

subplot(4,2,n+1), plot(x,cos(n*pi*x))

end

• Write and run these code.

1

2

3

4

5

Understand the code

• Identify the used of functions in the code

– subplot

– plot

• The code shows the use of loop
statement for .. end (noticed the syntax)

LOOP

– For loop

 While loop

 MATLAB has loop command similar to c

Exercise 2:

• Find the highest value in a matrix of 6 x 6
generated using rand() function.

function

• In MATLAB, function name is the same name
as the M-File name.

• The first line of the function file need to be
written as follow
function [list of output] = function_name [list of input]

• For example.
– Function [A] = Area[a,b,c];

• Then the function can be called by its name
for example
– Area(3,5,6);
– Area1 = Area(3,5,6);

23/9/2019

10

Example 3

• Write a function named Area that will compute
the area of a triangle given length of side a,b,c.

• Solution :
– Function name Area
– Input parameter .. a,b,c
– Output the area calculated , let says, A
– The calculation / process in getting area use formula

where s = (a+b+c)/2

solution

Exercise 4
• Write a function that will do equation of y+

x = z

• Write a function that will solve problem of
multiplication of y and x.

• Write a function that will receive a matrix of
any size and return a new matrix with Each
element being powered by 2.

*For each of the question call the function to test them in
a file.

6. IMAGE PROCESSING
APPLICATIONS

Image Processing using Matlab
Sumitha Balasuriya

59

Images in Matlab

• Matlab is optimised for operating on
matrices

• Images are matrices!

• Many useful built-in functions in the
Matlab Image Processing Toolbox

• Very easy to write your own image
processing functions

Image Processing using Matlab
Sumitha Balasuriya

60

Loading and displaying images
>> I=imread('mandrill.bmp','bmp'); % load image

>> image(I) % display image
>> whos I

Name Size Bytes Class

I 512x512x3 786432 uint8 array

Grand total is 786432 elements using 786432 bytes

image filename
as a string

image
format as a
string

Matrix with
image data

Dimensions of I (red, green
and blue intensity
information)

Matlab can only
perform arithmetic
operations on data
with class double!

Display the left
half of the
mandrill image

23/9/2019

11

Loading and displaying images

• Try using imshow(I) to display the image.

• Use different image of grayscale on both
function imshow() and image();

• What are the differences ?

Image Processing using Matlab
Sumitha Balasuriya

62

Representation of Images
• Images are just an array of numbers
>> I % ctrl+c to halt output!

• Intensity of each pixel is represented by the pixel element’s
value in the red, green and blue matrices

>> I(1,1,:) % RGB values of element (1,1)
ans(:,:,1) =

135
ans(:,:,2) =

97
ans(:,:,3) =

33

Images where the pixel value in the image
represents the intensity of the pixel are
called intensity images.

Red

Green

Blue

Image Processing using Matlab
Sumitha Balasuriya

63

Indexed images
• An indexed image is where the pixel values are indices to elements in a colour map or colour

lookup table.
• The colour map will contain entries corresponding to red, green and blue intensities for each

index in the image.

>> jet(20) % Generate a jet colourmap for 20 indices
ans =

0 0 0.6000
0 0 0.8000
0 0 1.0000
0 0.2000 1.0000
0 0.4000 1.0000
0 0.6000 1.0000
0 0.8000 1.0000
0 1.0000 1.0000

0.2000 1.0000 0.8000
0.4000 1.0000 0.6000
0.6000 1.0000 0.4000
0.8000 1.0000 0.2000
1.0000 1.0000 0
1.0000 0.8000 0
1.0000 0.6000 0
1.0000 0.4000 0
1.0000 0.2000 0
1.0000 0 0
0.8000 0 0
0.6000 0 0

RGB Entry for index value
3

3 4 7 3 6 1 9 8 9 1 2

5 6 14 4 2 5 6 1 4 5
2 8 9 4 2 13 7 8 4 5
5 1 11 5 6 4 1 7 4 4
1 9 5 6 5 5 1 4 4 6 5
5 9 2 1 11 1 3 6 1 9
7 6 8 18 1 8 1 9 1 3 3
9 2 3 7 2 9 8 1 6 6 4
7 8 6 7 4 15 8 2 1 3
7 5 10 8 4 10 4 3 6 4

Values can
range from 0.0
to 1.0 Red, green and blue intensities

of the nearest index in the
colourmap are used to display
the image.

Image Processing using Matlab
Sumitha Balasuriya

64

>> I2=I(:,:,2); % green values of I

>> image(I2)

>> colorbar % display colourmap

Displaying indexed images

Matlab considers I2 as an indexed image as it doesn’t
contain entries for red, green and blue entries

Inde
x
Associate
d color

Colour
Looku
p
Table

Image Processing using Matlab
Sumitha Balasuriya

65

Displaying indexed images (continued)

• change colourmap

>> colormap(gray)

• scale colourmap

>> imagesc(I2)

Type >>help graph3d to get a list of built-in
colourmaps. Experiment with different
built-in colourmaps.

Define your own colourmap mymap by
creating a matrix (size m x 3) with red,
green, blue entries. Display an image using
your colourmap.

Red =1.0,
Green = 1.0,
Blue =1.0,
corresponds to
index 64

Red =1.0,
Green = 1.0,
Blue =1.0,
corresponds to
index 255

Red =0.0,
Green = 0.0,
Blue = 0.0,
corresponds to
index 1

Red =0.0,
Green = 0.0,
Blue = 0.0,
corresponds to
index 0

Image Processing using Matlab
Sumitha Balasuriya

66

Useful functions for displaying images

>> axis image % plot fits to data

>> h=axes('position', [0 0 0.5 0.5]);

>> axes(h);

>> imagesc(I2)

Investigate axis and axes
functions using Matlab’s help

23/9/2019

12

Image Processing using Matlab
Sumitha Balasuriya

67

Histograms
• Frequency of the intensity values of the image

• Quantise frequency into intervals (called bins)

• (Un-normalised) probability density function of
image intensities

Image Processing using Matlab
Sumitha Balasuriya

68

Computing histograms of images in Matlab

>>hist(reshape(double(Lena(:,:,2)),[512*512 1]),50)

Convert image into a 262144
by 1 distribution of values

Histogram
function

Number of
bins

Histogram equalisation works by equitably distributing the pixels
among the histogram bins. Histogram equalise the green channel of
the Lena image using Matlab’s histeq function. Compare the
equalised image with the original. Display the histogram of the
equalised image. The number of pixels in each bin should be
approximately equal.

Generate the histograms of the green channel of the Lena image
using the following number of bins : 10, 20, 50, 100, 200, 500, 1000

Image Processing using Matlab
Sumitha Balasuriya

69

>>surf(double(imresize(Lena(:,:,2),[50 50])))

Visualising the intensity surface

Remember to
reduce size of
image!

Use Matlab’s built-in mesh and
shading surface visualisation
functions

Change type to
double precision

Image Processing using Matlab
Sumitha Balasuriya

70

Useful functions for manipulating
images

• Convert image to grayscale

>>Igray=rgb2gray(I);

• Resize image

>>Ismall=imresize(I,[100 100], 'bilinear');

• Rotate image

>>I90=imrotate(I,90);

Image Processing using Matlab
Sumitha Balasuriya

71

Other useful functions

Convert polar coordinates to

cartesian coordinates

>>pol2cart(rho,theta)

Check if a variable is null

>>isempty(I)

Trigonometric functions

sin, cos, tan

Convert polar coordinates to

cartesian coordinates

>>cart2pol(x,y)

Find indices and elements in a

matrix

>>[X,Y]=find(I>100)

Fast Fourier Transform

Get size of matrix

>>size(I)

Change the dimensions of a

matrix

>>reshape(rand(10,10),[100 1])

Discrete Cosine Transform

Add elements of a Matrix
(columnwise addition in matrices)

>>sum(I)

Exponentials and Logarithms

exp

log

log10

fft2(I)

dct(I)

Image Processing using Matlab
Sumitha Balasuriya

72

Convolution
Bit of theory! Convolution of two functions f(x) and g(x)

Discrete image processing 2D form

() () () () ()h x f x g x f r g x r dr





   

convolutio
n operator

Image Filter
(mask/kerne

l)

Support region
of filter where

g(x-r) is
nonzero

Output
filtered
image

1 1

(,) (,) (,)
height width

j i

H x y I i j M x i y j
 

   

Compute the convolution
where there are valid indices in
the kernel

23/9/2019

13

Image Processing using Matlab
Sumitha Balasuriya

73

Convolution example

Write your own convolution function
myconv.m to perform a convolution.
It should accept two parameters –
the input matrix (image) and
convolution kernel, and output the
filtered matrix.



1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

i

j

Filter (M)

Image (I)
197 199 195 194 189 190 132 90 112 101

194 194 198 201 189 196 150 85 87 97

194 194 198 195 186 191 109 90 90 124

197 187 195 198 185 186 115 78 81 96

194 190 198 193 187 177 88 86 94 69

194 194 190 190 179 177 93 99 95 100

201 194 191 186 186 181 74 110 82 76

196 194 195 191 183 164 77 119 84 88

192 194 199 192 191 174 89 164 103 129

201 190 187 189 178 168 90 82 88 84

0 0 0 0 0 0 0 0 0 0

0 196 196 194 192 170 137 105 97 0

0 195 196 194 192 167 133 98 92 0

0 194 194 193 189 158 124 92 90 0

0 193 193 191 186 154 122 92 89 0

0 194 192 189 184 149 121 91 90 0

0 194 192 188 182 146 122 93 95 0

0 195 193 190 183 147 128 100 106 0

0 194 192 189 181 146 125 100 105 0

0 0 0 0 0 0 0 0 0 0

=

1 1

(,) (,) (,)
height width

j i

H x y I i j M x i y j
 

   

http://www.s2.chalmers.se/undergraduate/courses0203/ess060/PDFdocuments/ForScreen/Notes/Convolution.pdf

Image Processing using Matlab
Sumitha Balasuriya

74

Convolution example in 1D

Horizontal slice from Mandrill
image

0.01 0.08 0.24 0.34 0.24 0.08 0.01

1D Gaussian
filter

 =

Filtered
Signal

Image Processing using Matlab
Sumitha Balasuriya

75

Common convolution kernels

0.11 0.11 0.11

0.11 0.11 0.11

0.11 0.11 0.11
Arithmetic mean
filter (smoothing)

>>fspecial('average')

-0.17 -0.67 -0.17

-0.67 3.33 -0.67

-0.17 -0.67 -0.17

Laplacian (enhance edges)
>>fspecial('laplacian')

-0.17 -0.67 -0.17

-0.67 4.33 -0.67

-0.17 -0.67 -0.17

Sharpening filter
>>fspecial('unsharp')

0.01 0.08 0.01

0.08 0.62 0.08

0.01 0.08 0.01
Gaussian filter

(smoothing)
>>fspecial('gaussian')

Investigate the listed kernels in Matlab by
performing convolutions on the Mandrill and
Lena images. Study the effects of different
kernel sizes (3x3, 9x9, 25x25) on the output.

1 2 1

0 0 0

-1 -2 -1

1 0 -1

2 0 -2

1 0 -1

Sobel operators (edge
detection in x and y directions)
>>fspecial('sobel')
>>fspecial('sobel')’

The median filter is used for noise reduction. It works by
replacing a pixel value with the median of its neighbourhood
pixel values (vs the mean filter which uses the mean of the
neighbourhood pixel values). Apply Matlab’s median filter
function medfilt2 on the Mandrill and Lena images. Remember

to use different filter sizes (3x3, 9x9, 16x16).

Image Processing using Matlab
Sumitha Balasuriya

76

Useful functions for convolution

Perform the convolution of an image using
Gaussian kernels with different sizes and
standard deviations and display the output
images.

• Generate useful filters for convolution
>>fspecial('gaussian',[kernel_height kernel_width],sigma)

• 1D convolution
>>conv(signal,filter)

• 2D convolution
>>conv2(double(I(:,:,2)),fspecial('gaussian‘,[kernel_height kernel_width] ,sigma),'valid')

Border padding optionskernelimage

End of MATLAB Tutorial

SCSV 3213

