
4/11/2019

1

SCSV3213

FUNDAMENTAL OF IMAGE PROCESSING

IMAGE ENHANCEMENT IN SPATIAL
DOMAIN

(Neighborhood Processing)

Dr. Md Sah Hj Salam

Acknowledgements

• Most of the slide are taken and modified from
other resources including books and slides
from lectures from others universities. Mainly
from O. Marques -Practical Image and Video
Processing Using MATLAB, Wiley-IEEE, 2011.It
is rearranged to suit the syllabus of the
course.

SYNOPSIS

In this lecture, image enhancement operations
in spatial domain will cover the followings

1. Neighborhood Operation

– Introduction of Neighborhood Processing

• Convolution

• Correlation

– Linear Spatial Filter

– Non-Linear Spatial Filters

4/11/2019

2

2. NEIGHBORHOOD PROCESSING

Neighborhood Processing : Intro

• Remember from previous lecture that point processing
is when the operation applied on the pixels values
regardless of the position !!!

• What is Neighborhood processing ? Can you guess
from the named?

• After this lecture, you should
– Understand the different and the usage of the operation.

– Knows why some image problems need neighborhood
operations to be applied while point processing cannot
solved it.

– Knows types of neighborhood processing (filter) and to
which image problems the filters are suitable.

Neighborhood Processing :
terminology

• Neighborhood

– The pixels surrounding a given pixel. Most neighborhoods
used in image processing algorithms are small square
arrays with an odd number of pixels. This small square
array is called mask.

Neighborhood Processing :
terminology

• Masks are normally 3×3.

• Each mask coefficient can be interpreted as a
weight.

4/11/2019

3

Neighborhood Processing :
terminology

• Neighborhood
– In the context of image topology, neighborhood has a different

meaning:

• 4-neighborhood

• Diagonal neighborhood

• 8-neighborhood

Neighborhood Processing

• Neighborhood-oriented processing consist of
determining the resulting pixel value at coordinates
(x,y) as a function of its original value and the value
of (some of) its neighbors, using a convolution
operation.

• The convolution of a source image with a small 2D
array (mask or kernel) produces a destination
image in which each pixel value depends on its
original value and the value of (some of) its
neighbors.

• The convolution mask determines which neighbors
are used as well as the relative weight of their
original values.

Neighborhood Processing

• Main steps:

– Define a reference point in the input image, f(x0, y0).

– Perform an operation that involves only pixels
within a neighborhood around the reference point
in the input image.

– Apply the result of that operation to the pixel of
same coordinates in the output image, g(x0, y0).

– Repeat the process for every pixel in the input
image.

Neighborhood Processing

• Linear filters: where the resulting output pixel is
computed as a sum of products of the pixel values
and mask coefficients in the pixel's neighborhood
in the original image.
– Example: mean filter

• Nonlinear filters: where the resulting output pixel

is selected from an ordered (ranked) sequence of
pixel values in the pixel's neighborhood in the
original image.
– Example: median filter

4/11/2019

4

Neighborhood Processing

Linear filter

Non-Linear filter

2.1 CONVOLUTION AND
CORRELATION

Convolution and correlation

• Convolution and correlation are the two
fundamental mathematical operations involved in
linear neighborhood-oriented image processing
algorithms.
– The two operations differ in a very subtle way.

• Convolution is a widely used mathematical
operator that processes an image by computing --
for each pixel -- a weighted sum of the values of
that pixel and its neighbors.
– Depending on the choice of weights a wide variety

of image processing operations can be implemented.

Convolution and correlation

• 1D convolution

4/11/2019

5

Example convolution (1D)

• A = [0 1 2 3 2 1 0]

• B = [1 3 -1]

• A*B = [1 5 8 9 4 1 -1]

Let calculate together in

class how the result is
achieved !!

Convolution and correlation

• 2D convolution

• 2D correlation

Example 2D convolution

5 8 3 4 6 2 3 7

3 2 1 1 9 5 1 0

0 9 5 3 0 4 8 3

4 2 7 2 1 9 0 6
A =

B =
2 1 0

 1 1 -1
 0 -1 -2

Find the convolution of A*B given the value of A and B are
shown below. B is the mask.

Convolution and correlation

• 2D convolution

– Same Example with previous image portion

Calculate the remaining
result of A*B for the first

line values..

A * B =

20 10 2 26 23 6 9 4
18 1 -8 2 7 3 3 -11
-
-

4/11/2019

6

Convolution and correlation

• Convolution with different masks

– Convolution is a very versatile image
processing method.

– Depending on the choice of mask
coefficients, entirely different results can be
obtained.

Convolution and correlation

• Convolution with different masks

– Example

(a) - original
(b) - low pass filter
(c) - high pass filter
(d) - horizontal edge

detection

Low pass = [1/9 1/9 1/9
 1/9 1/9 1/9
 1/9 1/9 1/9]
High pass = [0 -1 0
 1 5 -1
 0 -1 0]
HED = [1 1 1
 0 0 0
 -1 -1 -1]

Convolution and correlation

• Correlation

– Simply put, correlation is the same as
convolution without the mirroring (flipping) of
the mask before the sums-of-products are
computed.

– The difference between using correlation and
convolution in 2D neighborhood processing
operations is often irrelevant because many
popular masks used in image processing are
symmetrical around the origin.

Example correlation (1D)

• A = [0 1 2 3 2 1 0]

• B = [1 3 -1]

• Calculate the correlation. This is the same
example previously when we used
convolution

• A*B = [1 5 8 9 4 1 -1]

• A ⌦ B = [-1 1 4 9 8 5 1]

?

4/11/2019

7

Convolution in MATLAB

• conv2: computes the 2D convolution
between two matrices. In addition to the
two matrices it takes a third parameter
that specifies the size of the output.

• filter2: rotates the convolution mask
(which is treated as a 2D FIR filter) 180°
in each direction to create a convolution
kernel and then calls conv2 to perform
the convolution operation.

Dealing with image borders

Dealing with image borders:
options

1. Ignore the borders. There are two variants of this approach:

 Keep the pixel values that cannot be reached by the overlapping mask
untouched.

 Replace the pixel values that cannot be reached by the overlapping
mask with a constant fixed value, usually zero (black).

2. Pad the input image with zeros.

3. Pad with extended values.

4. Pad with mirrored values.

5. Treat the input image as a 2D periodic function whose values
repeat themselves in both horizontal and vertical directions.

 In MATLAB: check the boundary_options parameter for
function imfilter.

Image smoothing (Low-Pass Filters)

• Spatial filters whose effect on the output image is
equivalent to attenuating high-frequency
components (i.e., fine details in the image) and
preserving low-frequency components (i.e.,
coarser details and homogeneous areas in the
image).

• Linear LPFs can be implemented using 2D
convolution masks with non-negative coefficients.

• Linear LPFs are typically used to either blur an
image or reduce the amount of noise present in
the image.

• In MATLAB: imfilter and fspecial

4/11/2019

8

Mean (averaging) filter

• The simplest and most widely known
spatial smoothing filter.

• It uses convolution with a mask whose
coefficients have a value of 1, and divides
the result by a scaling factor (the total
number of elements in the mask).

• Also known as box filter.

Mean (averaging) filter: impact of mask
size

(a) - input image
(899x675)
(b) – masking
 7x7
(c) – masking
 15x15
(d) Masking
 31x31

Mean (averaging) filter: variations

• Modified mask coefficients, e.g.:

• Directional averaging

• Selective application of averaging calculation
results

• Removal of outliers before calculating the average

Gaussian blur filter

• The best-known example of a LPF
implemented with a non-uniform kernel.

• The mask coefficients for the Gaussian blur
filter are samples from a 2D Gaussian
function:

4/11/2019

9

Gaussian blur filter

• Properties:
– The kernel is symmetric w.r.t rotation, therefore there is no

directional bias in the result.

– The kernel is separable, which can lead to fast
computational implementations.

– The kernel's coefficients fall off to (almost) zero at the
kernel's edges.

– The Fourier Transform (FT) of a Gaussian filter is another
Gaussian (this will be explained in Chapter 11).

– The convolution of two Gaussians is another Gaussian.

Gaussian blur filter
• Example:

I = imread('Figure10_07_a.png');

h1 = fspecial('gaussian', [5 5], 1)

h2 = fspecial('gaussian', [13 13], 1);

h3 = fspecial('average', [13 13]);

J1 = imfilter(I, h1);

J2 = imfilter(I, h2);

J3 = imfilter(I, h3);

Median and other nonlinear filters

• Nonlinear filters also work at a
neighborhood level, but do not process the
pixel values using the convolution operator.
– Instead, they usually apply a ranking (sorting) function to

the pixel values within the neighborhood and select a value
from the sorted list.

– Sometimes called rank filters.

– Examples: median filter, max and min filters.

Median filter

• Works by sorting the pixel values within a
neighborhood, finding the median value
and replacing the original pixel value with
the median of that neighborhood.

4/11/2019

10

Median filter

• Example
(salt-and-pepper
noise reduction)

B
y O

ge M
arq

u
es

C
o

p
yrigh

t ©
 2

0
1

1
 b

y Jo
h

n

W
iley &

 So
n

s, In
c. A

ll righ
ts

reserved
.

(a) Original Image

(b) with salt and pepper

noise

(c) 3x3 median filter

(d) 3x3 neighborhood

averaging

Image sharpening (High-Pass Filters)

• Spatial filters whose effect on the output image is
equivalent to preserving or emphasizing its high-
frequency components (e.g., fine details, points,
lines, and edges), i.e. to highlight transitions in
intensity within the image.

• Linear HPFs can be implemented using 2D
convolution masks with positive and negative
coefficients, which correspond to a digital
approximation of the Laplacian, a simple,
isotropic (i.e., rotation invariant) second-order
derivative that is capable of responding to
intensity transitions in any direction.

Image sharpening (HPF)

• The Laplacian

Image sharpening (HPF)

• Composite Laplacian mask

• For c=1:

4/11/2019

11

Image sharpening (HPF)

• Example:

I = imread('coat_of_arms_before.png');

h = fspecial('laplacian', 0);

I1 = im2double(I);

J = imfilter(I1,h);

K = I1-J;

h8 = [1 1 1; 1 -8 1; 1 1 1]

K8 = I1 - imfilter(I1,h8,'replicate');

Ja = J + 0.75;

Directional difference filters

• Similar to the Laplacian high-frequency
filter.
– Main difference: directional difference filters emphasize

edges in a specific direction.

• Usually called emboss filters.

• Examples of masks that can be used to
implement the emboss effect:

Unsharp masking

• Consists of computing the subtraction
between the input image and a blurred
(low-pass filtered) version of the input
image.

• Rationale: to “increase the amount of
high-frequency (fine) detail by reducing
the importance of its low-frequency
contents”.

Unsharp masking

• Variants (see Tutorial):

– (1)

– (2)

4/11/2019

12

Unsharp masking

• Variants (see Tutorial):

– (3)

High-boost filtering

• where: c (c > 8) is a coefficient
(“amplification factor”) that controls how
much weight is given to the original image
and the high-pass filtered version of that
image.
– For c=8, the results would be equivalent to those seen earlier

for the conventional isotropic Laplacian mask.

– Greater values of c will cause significantly less sharpening.

ROI Processing

• Filtering operations are sometimes
performed only in a small part of an image,
known as a region of interest (ROI), which
can be specified by defining a (usually
binary) mask.
– Image masking is the process of extracting such a subimage (or

ROI) from a larger image for further processing.

• In MATLAB
– A combination of two functions: roipoly (see Tutorial 6.2)

and roifilt2

ROI Processing

• Example :

I = imread('Figure10_11_a.png');

r = [90 254 254 90];

c = [84 84 447 447];

BW = roipoly(I,c,r);

h = fspecial('gaussian', [15 15], 5);

J = roifilt2(h,I,BW);

h8 = [1 1 1; 1 -8 1; 1 1 1]

K = roifilt2(h8,I,BW);

h4 = [0 -1 0; -1 5 -1; 0 -1 0]

L = roifilt2(h4,I,BW);

4/11/2019

13

ROI Processing

• Example :

Combining spatial enhancement
methods

• When faced with a practical image processing
problem, a question arises:
 Which techniques should I use and in which
sequence?

• There is no universal answer to this question.
– Most image processing solutions are problem-specific and involve the

application of several algorithms -- in a meaningful sequence -- to
achieve the desired goal.

– The choice of algorithms and fine-tuning of their parameters is a trial-
and-error process.

– Using the knowledge acquired so far you should be able to implement,
configure, fine-tune, and combine image processing algorithms for a
wide variety of real-world problems.

Matlab Functions

• You can make the mask / kernel yourself using
matrix operation which we have learned or
use the build in mask in Matlab, fspecial() and
used imfilter() function to apply the mask.

• See next examples in the tutorial

• Understand how to use them ..

TUTORIAL ON FILTERING

4/11/2019

14

TUTORIAL 1: Smoothing filter 1
• using mean/averaging filter using fpspecial() function

 I = imread('cameraman.tif');
 figure, subplot(1,2,1), imshow(I), title('Original Image');
 fn = fspecial('average')
 I_new = imfilter(I,fn);
 subplot(1,2,2), imshow(I_new), title('Filtered Image');

• Create and use non-uniform filter on the same image

 fn2 = [1 2 1; 2 4 2; 1 2 1]
 fn2 = fn2 * (1/16)
 I_new2 = imfilter(I,fn2);
 figure, subplot(1,2,1), imshow(I_new), title('Uniform Average');
 subplot(1,2,2), imshow(I_new2), title('Non-uniform Average');

TUTORIAL 2: Smoothing filter 2
• create and apply Gaussian filter

% create and show in bar graph
 fn_gau = fspecial('gaussian',9,1.5);
 figure, bar3(fn_gau,'b'), title('Gaussian filter as a 3D graph');

% apply on the cameran image
 I_new3 = imfilter(I,fn_gau);
 figure
 subplot(1,3,1), imshow(I), title('Original Image');
 subplot(1,3,2), imshow(I_new), title('Average Filter');
 subplot(1,3,3), imshow(I_new3), title('Gaussian Filter');

 clear all;
 close all;

TUTORIAL 3: Sharpening filter 1
• Create and use laplacian filter

% load the image moon
 I = imread('moon.tif');
 Id = im2double(I);
 figure, subplot(2,2,1), imshow(Id), title('Original Image');

 % create laplacian filter
 f = fspecial('laplacian',0);
 I_filt = imfilter(Id,f);
 subplot(2,2,2), imshow(I_filt), title('Laplacian of Original');

% Display a scaled version of the Laplacian image for display purposes.
 subplot(2,2,3), imshow(I_filt,[]), title('Scaled Laplacian');

% Subtract the filtered image from the original image to create the
% sharpened image.
 I_sharp = imsubtract(Id,I_filt);
 subplot(2,2,4), imshow(I_sharp), title('Sharpened Image');

TUTORIAL 4: Sharpening filter 2
• Another way in using lapacian filter – composite mask

% This script assume the variable fro previous tutorial is active

 f2 = [0 -1 0; -1 5 -1; 0 -1 0]
 I_sharp2 = imfilter(Id,f2);
 figure, subplot(1,2,1), imshow(Id), title('Original Image');
 subplot(1,2,2), imshow(I_sharp2), title('Composite Laplacian');

 clear all;
 close all;

4/11/2019

15

Sharpening filter 3
• Laplacian filter on blur image

• Process Flow

TUTORIAL 5: Sharpening filter 3
• Another way in using lapacian filter on blur image

 I = imread('moon.tif');
 f_blur = fspecial('average',13);
 I_blur = imfilter(I,f_blur);
 figure, subplot(1,3,1), imshow(I), title('Original Image');
 subplot(1,3,2), imshow(I_blur), title('Blurred Image');

% shrink the histogram of the blur image
 I_blur_adj = imadjust(I_blur,stretchlim(I_blur),[0 0.4]);

% Now subtract the blurred image from the original image
 I_sharp = imsubtract(I,I_blur_adj);

% Stretch the sharpened image histogram to the full dynamic grayscale
% range and display the final result.

 I_sharp_adj = imadjust(I_sharp);
 subplot(1,3,3), imshow(I_sharp_adj), title('Sharp Image');

TUTORIAL 6: Sharpening filter 4
• Another way in using lapacian filter on blur image

% Subtract the blurred image from original image to generate a sharpening image.

 I_sharpening = imsubtract(I,I_blur);

% Add sharpening image to original image to produce final result.
 I_sharp2 = imadd(I,I_sharpening);
 figure, subplot(1,2,1), imshow(I), title('Original Image');
 subplot(1,2,2), imshow(I_sharp2), title('Sharp Image');

TUTORIAL 7: Sharpening filter 5
• Another way in using lapacian filter on blur image

% Subtract the blurred image from original image to generate a sharpening image.

 I_sharpening = imsubtract(I,I_blur);

% Add sharpening image to original image to produce final result.
 I_sharp2 = imadd(I,I_sharpening);
 figure, subplot(1,2,1), imshow(I), title('Original Image');
 subplot(1,2,2), imshow(I_sharp2), title('Sharp Image');

4/11/2019

16

TUTORIAL 8: Median Filter
• Sample median filter usage for noise restoration

 I = imread('eight.tif');
 J = imnoise(I,'salt & pepper',0.02);
 K = medfilt2(J);
 imshow(J), figure, imshow(K)

End Part 2:
Spatial Domain Enhancement

(Neighborhood Processing)
SCSV 3213

