School of Computing

Faculty of Engineering

UNIVERSITI TEKNOLOGI MALAYSIA
DATA STRUCTURE & ALGORITMA
(SECJ2013-06)

Lecturer: Dr. Johanna Ahmad

Mini Project Report

Food Ordering System

By,
ALAA ALRHMAN MOHAMMED RAWEH AL-SHAIBANI (A18CS4037)
OMAR HAMED ABDELLATIF IBRAHIM (A18CS4061)
VIMALRAJ A/L SIVARAJOO (A19EC0213)

HABIBA IBRAHIM ABDELRAHIM ELGAMMAL (A18CS0303)

Table of Contents

Introduction 3
Objective 4
System Analysis & Design 6
System Prototype 13
Development Activities 20

Source Code

23

1.0 Introduction

Consistent with the Ministry of Health Malaysia (MOH), there have been over 38 thousand
active cases of the Coronavirus currently in Malaysia and has resulted in 605 deaths as of 18
January 2021. The number of new cases has been snowballing at an exponential rate since
October of 2020 and as of early November 2020, the number of new cases has consistently been
over 1000 every single day. Needless to say, the greatest number of cases has reached 4029 on

16 January 2021 which is deeply worrying.

Due to this fact, online ordering has become one of the most important and useful services that
have been increasingly used, especially in the field of ordering food as each restaurant has only a
limited number of customers to dine in. If you need to get a meal, you have to go through a
time-consuming process especially when you go to a place without having a reservation or the
restaurant cannot serve all your family members in one table. Facing such difficulties made
online food ordering a good choice for customers to get their favorite meals. As a result of that

we choose to develop a food ordering system as our assignment objective.

The developed food ordering system will provide the customer with the option of selecting the
meal by giving him the chance to order a meal by showing him the ordered list that contains all
options. It also will give the staff the ability to update the menu by adding new meals and put
them in the right alphabetical order as well as the ability of searching for food items and other

functionalities that will be further discussed.

1.1 Objective

e To develop a system that will surely satisty the customer service.

e Effective modern day food ordering system.

e Businesslike and well organized in a very straightforward manner .

e Consisting basic/necessary service features.

e To design a system that is able to accommodate huge amounts of orders at a time.

e accuracy and reliability.

e To evaluate its performance and acceptability in terms of security, user
friendliness.

e minimize the time of ordering.

e To improve the communication between the client and the server and

e Maintain distance.

e Promote a safe environment.

e Minimum contact.

e Manual listing of orders by the waiters/waitresses may result to slow response in
customer service. Hence, if the restaurant uses the proposed system,
manipulation of orders to the customers is so easy and quick.

e Ensure customer satisfaction.

1.2 Explanation of the data structure and techniques used:

Queue is essentially a list of data items, commands, etc. stored in such a way that it can be
retrieved in a certain order, usually the order of insertion. Queue is open at both ends. One end is
always used to insert data (enqueue) and the other end is used to delete data (dequeue). Queue
follows the methodology of first-in-first-out (FIFO).

In the linked queue, two pointers are stored in the memory the front pointer and the rear pointer.
The front pointer contains the address of the starting element of the queue, while the back pointer
contains the address of the last element of the queue.

Insertion and deletion shall be performed at the rear and front ends respectively. If both front and
back are NULL, it indicates that the queue is empty.

In our project we have used queue for both food list and customer list. Our system offers the
customers to have their own Id by logging in and later order food from the menu. So, the
customer data are stored by the help of queue.

Admin of the system can update the food items based on the availability. So, once they add a
food item, it is stored in the queue by the help of enqueuer() function and later the admin can

delete a food item with the help of dequeuer() function process

2.0 System Analysis & Design

2.1 System Requirements

2.1.1 Use case diagram

Show list of
customers

Add Food
Search Food
Admin

Search customer

Food ordering System

Reqister

Show reciept

Customer

2.1.2 Use Case Description for food ordering system

Actor

Task

Admin

The admin in our food ordering system
is the person who is in charge of
controlling the system.

He is responsible for adding food
items in the menu.

The admin is also able to search a
specific customer in the
database,showing the list of
customers, and search for food item

Customer

The customer is the user who is able
to register in the system,view all the
food menu, as well as request to show
the receipt of his order.

2.1.3 Detail Description for each Use Case

Use case

Description

Show list of customers

It shows the record of all the
customers that have been registered
in the system

Accessed by: admin

Add Food

It is the function that enables the
admin to add new food items to the
menu of the restaurant by adding an
id , name, and price for each added
item.

Accessed by :admin

Search Food

This use case allows the admin to
search for specific food items from
the menu by keying in the id number
of the item.

Accessed by :admin

Search customer

The admin is allowed to access the
registered customers in the system
and search for a certain person
using his id.

Accessed by :admin

Register The system allows new customers to
register themselves in the system .
Accessed by:New customers.

Show menu Users can view all the menu items

added in the system and choose
their order from it.

Accessed by:customer

Show Receipt

After the customer chooses items
from the food menu , he is allowed to
request to view the receipt.

Accessed by:customer

2.2 Class Diagram

Customer

“next: Customer
id: int

name: string
phno: lang

Food List

*head: FoodList
*tail FoodList

+ Customer(int, string, long). int

displayinfo(): void

points

CustomerList

head*: Customer
tail*: Custoner

+ + + o+ o+ o+

CustomerList(): int
~CustomerList(): int
displayList(): void
findCustomer(int). boolean
insertNode(int, string, long): int
logMessage(int): boolean

has

Admin

id: int

name: string
position: string
type: int

o A e ——

Admin(int, string, int, string): void
Admin(): void

getiD() int

getNama(}: string

getPosition(): string

getType() int

setiD{int): void

setName(string): void
setPosition(string). void
setType(int): int

has

o ke

-

displayList{): void
findFood(int): boolean
FoodList(). int

~FoodList(): int
inserthode(stning, int, int): void
printReciet(int). boolean

points

Food

- *next Food
id: int

- name: stning
price: int

+ displayinfo(): void
+ Food(string, int, int): int

2.3 Flow chart

e 2.2 System Design (flow chart)

2.2.1 - Flow Chart 1 : Customer Menu
/ o /
CustomeriD

CustomarlD
Name,
Phone Num

? / Display Menu H Read Order /

Display Receipt //

Choice 3

2.2 System Design (flow chart)

2.2.2 - Flow Chart 2 : Admin Menu

<
e Tm Vi

. Display /
Customer List /

Choice 3

Read
> FoodiD, /
Name, /
Price
Read FoodID /L/ Display FoodID /;

Read CuslomrllyL»/h play Cusbmery——

2.4 Techniques used

Explanation of the data structure and techniques used

Queue is essentially a list of data items, commands, etc. stored in such a
way that it can be retrieved in a certain order, usually the order of insertion.
Queue is open at both ends. One end is always used to insert data
(enqueue) and the other end is used to delete data (dequeue). Queue
follows the methodology of first-in-first-out (FIFO).

In the linked queue, two pointers are stored in the memory the front pointer
and the rear pointer. The front pointer contains the address of the starting
element of the queue, while the back pointer contains the address of the
last element of the queue.

Insertion and deletion shall be performed at the rear and front ends
respectively. If both front and back are NULL, it indicates that the queue is
empty.

In our project we have used queue for both food list and customer list. Our
system offers the customers to have their own Id by logging in and later
order food from the menu. So, the customer data are stored by the help of
queue.

Admin of the system can update the food items based on the availability.
So, once they add a food item, it is stored in the queue by the help of
enqueuer() function and later the admin can delete a food item with the
help of dequeuer() function process

3.0 System Prototype

Are you a

1. Customer
2. Admin

When the user opens the system there will be two choices to choose from .

Select whether you are a customer or an admin.

Welcome to our food ordering system !
1. Existing Customer

2. New Customer

Please make a selection to continue

Welcome to our food ordering system
1. Existing Customer
2. New Customer

Please make a selection to continue :2
Enter id :10

Enter name : omar

Enter Phone Number :85 50

If the user was a customer he must choose whether he is a new or existing customer.

If he was a new customer then he has to input id, name and phone number so the system can
take record and add him to the database.But if the user was an existing customer he may
proceed with the order.

Welcome! Please select yvour choice

Show Menu

Show Receipt

Exit

After that the customer must select the action that he would like to take.

Welcome! Please select your choice
1. Show Menu

Show Receipt

Exit

Price
Hot Dog 8
Spicy Chicken Mcdeluxe 17
Roti chinai 26

Mcnuggets

are
* Orders (Press @ ce you are

Orders (Pr 0 once you are do

Choose ‘s \Pre) once you are
Thank us!
Press) enter to continue

If the customer selected 1 which is show menu, a menu will pop up containing all the food list
that the restaurant offers.Then he should choose his order by keying in the id of the preferred
food.

Welcome! Please select vour choice
1. Show Menu
Show Receipt

Exit

If the customer wants to view the receipt he can choose number 2 .

Thank you for using us as your preferred platform!!

Your order is

1D Name Price
3
nuggets 28
Chicken Mcdeluxe 17

A list of the customer’s order will be shown with their prices respectively .

Are you a
Customer
Admin

Enter Password : passwordg

If the user was an admin he must key in the password to enter the admin view.

ome! Plea select your c

Show list of Customers
Add Food
earch food
rch Customer
Exit

The admin is given different choices from the customer where he can choose to view the list of
the registered customers , add new food to the menu, search for specific food item , search for a
customer, or he may exit the system.

Name

Omar 32
Alaa 35
Ali 23

angelo 1iL.f

angeliﬂ&
omar 50505050

~ to contlnue

If the admin chose to show the list of customers , a record of the registered customers will
appear.

=

= =
¢ -

Show list of Customers
. Add Food
. Search food

=]

ch Customer

.-_'Lr.:I
~ name : burger

3 T 15
er price 15,

A
5.
2
En
En
F_"

And if he chose to add a food item to the menu , he must input the id , name and price of the
food then it will be added directly.

Food.tit - Motepad

File Edit Format View Help

3 8 Hot Dog

6 17 Spicy Chicken Mcdeluxe
7 20 Roti chinai

4 20 Mcnuggets

[8 5003 pasta

5 15 burger

ur choice

Search Customer

Exit

[, O W I

Lt

food id

Name
Hot Dog

Enter anything and then press enter to continue !

Here ,the admin chose to search for food and the item with the keyed in id appeared.

Welcome! Please select your choice
1. f Customers

. Add Food

Search food

Search Customer

Exit

[0, T N I

=

Enter customer id : 18
ID Name Phone
18 omar 50565058

er anything to continue !

select your choice
rs

Add Food

Search food

Search Customer

Exit

2.
3.
i
5.
5

And finally the admin can search for a certain customer or he can choose to exit the system

4.0 Development Activities

Meeting Date

Members Present

Activity

Member Tasks

11/01/2021

All members present.

Discussion regarding
requirements of the

mini project and

divided tasks for parts

1,2 and 3.

OMAR HAMED &
ALAA:

Have an initial idea
on implementation
of the different
algorithms.

Coding the food
ordering system.

HABIBA:
Plan System design
(class diagram).

VIMALRAI:
Introduction,
objectives and report
In-charge.

23/01/2021

All members present.

Discussion regarding
report & presentation
for mini project and
divided tasks for parts
4 and 5.

OMAR HAMED &
ALAA:
Implementing the
necessary project
requirements &
specifications into
food ordering system

code.

VIMALRAIJ &
HABIBA:
brainstormed
necessary elements

for report.

VIMALRAUI:
Making System
Design Algorithm
used: Flowchart

HABIBA:
Use case diagram,
function explanation

and prototype.

27/01/2021

All members present.

Edit and Compile full
Report & Record

video presentation.

OMAR HAMED &
ALAA:

Review the flowchart.
Testing the code, and

bug fixing.

VIMALRAIJ &
HABIBA:
Correcting and
Finalizing Complete

report.

All members
participate in the

video presentation.

Source Code

Admin.cpp

#include

Admin: :Admin ()

{
id = 0;
type = 0;
position

n

name =

£,

type = t;

position = e;

name = ny;

Admin: :setID(a)

string e)

Admin

type =

:getType ()

type;

Admin: :SetPosition (string a)

position = a;

}

string Admin::getPosition ()

{

return position;

Admin: :setName (string a)

ing Admin: :getName ()

return name;

#define

#include

string position, name;

Admin (i, string n, t, string

setID (a);

getID();

SetType (a);

getType () ;

SetPosition (string a);

string getPosition () ;

setName (string a) ;

string getName () ;

b
#endif

Customer.cpp

#include "Customer.hpp"

#include <iostream>

std;

: :Customer (_id, string _name,

_phno)

Customer: :displayinfo ()

cout << id << "\t" << name << "\t" <<
lphno << endl;

Customer.hpp

#ifndef
#define

#include

Customer

id;
string name;
phno;

omer *next =

Customer (, string,

displayinfo () ;

customerList.cpp

#include

#include

#include "CustomerList.hpp"

#include

using

omerList::CustomerList ()

head
tail

omerList::~CustomerList ()

Customer *currNode head;

stomer *nextNode g

while (currNode !=

{
nextNode = currNode->next;
delete currNode;

currNode = nextNode;

::insertNode (id,

phon)

Customer *temp = new Customer (id,
phon) ;

temp->next =

tail->next = temp;

tail = tail->next;

::displayList ()
Customer *curr = head;
while (curr !=)
{
curr->displayinfo () ;

curr = curr->next;

omerList::findCustomer (

Customer *temp = head;
while (temp !=
{
if (temp->id == 1)
{

i)

cout << "ID\tName \tPhone"

temp->displayinfo () ;
return H
}

temp = temp->next;

return

<<

omerList::logMessage (i)

Customer *temp = head;

while (temp !=
{

if (temp->id == 1)

{
system ("C
cout << "Wecome Back Mr/Mrs "
<< temp->name;
Sleep (1500) ;

return

}

temp = temp->next;

return

customerList.hpp

#ifndef

omer *head;

mer *tail;

CustomerList () ;

~CustomerList () ;

insertNode (, string,

findCustomer () 2
logMessage () ;
displayList () ;

Food.cpp

#include "Food.hpp"

#include <iostream>
using

Food: :Food (string name,

price)

name = namey;
id = id;

price = price;

next = g

Food: :displayinfo ()

cout << 1d << "\t" << name << "\t" <<

price << endl;

}

Food.hpp

#ifndef
#define

#include

using

string name;
id;
price;

Food *next;

Food (string,

displayinfo (),

FoodList.cpp

#include "FoodList.hpp"
#include "Food.hpp"

#include

using

FoodList: :FoodList ()

{
head

::~FoodList ()

Food *currNode

Food *nextNode

(currNode !=

nextNode = currNode->next;

delete currNode;

currNode = nextNode;

FoodList::insertNode (string name,

price)

Food *temp 0 d(name, id, price):;

temp->next

if (head
{
head
tail

tail->next = temp;

tail = tail->next;

FoodList::displayList ()

Food *curr = head;
while (curr !=
{
curr->displayinfo () ;

curr = curr-—->next;

FoodList::printReciet (

Food *temp = head;

while (temp !=

{
if (temp->id == 1)
{

cout << temp->id << "\t" <<

temp->name << "\t" << temp->price << endl;

return

}

temp = temp->next;

::findFood (

Food *temp = head;

while (temp !=
{
if (temp->id == 1)
{
cout << "\nID\t Name\t\t

Price" << endl;

temp->displayinfo () ;

return 8

temp = temp->next;

FoodList.hpp

#ifndef
#define
#include "Food.hpp"
#include <iostream>

using std;

FoodList () ;
~FoodList () ;

insertNode (string,
findFood () 2

printReciet () g

displayList () ;

Main.cpp

#include
#include
#include
#include
#include
#include

#include

using

fst
file

stri

whil

{

retu

Ins

<windc
"Customer.hpp"
"Food.hpp"

in.hpp"

.open ("Food. txt",
size = 0;

id, price;

ng name;

e (!file.eof())

file >> id;

file >> price;

getline (file, name) ;

a.insertNode (name, id,

size++;

rn size;

ertionSort (

price);

min, temp;

i <n - 1; 1i++)

i+ 1; jJ < n; jt+)

(alj] < almin])

ReadCustomer (CustomerList

file.open ("Customers.txt", ios::in);

size = 0, id;
phno;

ng name;
(!file.eof ())

file >> id;

file >> phno;

getline (file, name) ;
a.insertNode (id, name, phno) ;
size+t+;

}

return size;

dispAdminMenu ()

system ("CLS") ;
aj
cout << "Welc
choice " << endl
<< "1.
endl
<<
<< 5 & d" << endl
<< "4, h (¢ omer" << endl
<< "5. Exit" << endl;
cin >> a;

return a;

DispCustMenu ()

system ("CLS") ;
ay
cout << "Welcome! P1
choice " <<
<< . S Menu" << endl
<< . Show ipt" << endl
<< 3. i << endl;

return a;

dList fList;

CustomerlList clList;

sizea = 0, sizeb, y;

fstream file;

sizea = ReadFood (fList) ;

sizeb = ReadCustomer (cList) ;

" << endl
Customer " << endl

min" << endl;

system ("C

p, id;

string name;
any;

phno;

"Welcome to our food
1" << endl

"1. isting Customer" <<

to
continue :";
cin >> p;
if (p '= 1 && p

{

<< "Invalid Choice

try again!";

cout << "Enter id

cin >> id;

cin.ignore (100, '\n');

cout << "Enter name

getline (cin, name) ;

cout << "Enter Phone Number

cin >> phno;

file.open ("Customers.tx
:app) ;

file << endl

<< id << " " oL

ec, flag =
cout << "Enter (omer id
cin >> ec;

or (; k < sizeb; k++)

if (cList.logMessage (k))

}
if (flag == 0)
{
cout << "Sorry Invalid

Customer ID !!";

Sleep (1000) ;
goto A;

a = DispCustMenu () ;
switch (a)

{

cout <<
"\n:kv\'*:P.:k**'k:k**'k'kv\'*'kI\,IEP_]U%:**'k%:**k%:**k%:**k"
<< "\nID\t Name\t\t
Price" << endl;

flList.displayList () ;

y = 0;
(s !'=0)

cout << "Chc your Ord
(Press 0 once you
cin >> s;
rec(y]
yt++;
}

InsertionSort (rec, Vv);

cout << "Thank yc or shopping

cout << "\n Pr
press enter to continue";

cin >> any;

system ("CLS") ;

cout << "\n\n Thank you for

using us as your preferred platform!!" <<

<< "Your o

<< "\nID\t Name\t\t Price"

i=20; i< y; i++)

flList.printReciet (rec[i]);

cout << endl
<< "Have

break;

system ("CLS") ;
any;
pas[20];
b;

cout << "Enter Pa
cin >> pas;
if (strcmp (pas, "pa
{
cout << "ACCESS DENIED!!";

here2:
b = dispAdminMenu () ;
tch (b)

cout <<

" \n\n* * Kk Kk Kk ok k k% ***CuStOI’[’EI‘ R R R R S ALY

<< "ID\tName \tPhone"

cList.displayList () ;

anything
and then p
cin >> any;
goto here2;

break;

id, price;
string name;
cout << "Enter id

cin >> id;

cin.ignore (100, '\n');

cout << "Enter name
getline (cin, name) ;
cout << "Enter price

cin >> price;

file.open ("Food.txt",
::app) ;
file << id << " " << price
<< name << endl;

goto here2;

ec, flag = 0;

cout << "\n\n Enter food id

cin >> ec;

if (fList.findFood(ec))
{

if (flag
{
cout << "Invalid ID";

}

cout << "\n Enter anything

enter to continue ! ";

cin >> any;

goto here2;

cout << "\n\n Enter
customer id

cin >> ec;

if (cList.findCustomer (ec))

{

<< endl;

,O)

"Invalid ID";

}

cout << "\n Enter anything

to continue
cin >> any;

goto here2;

a Nice Day!";

}
system ("pause") ;

return 0;

