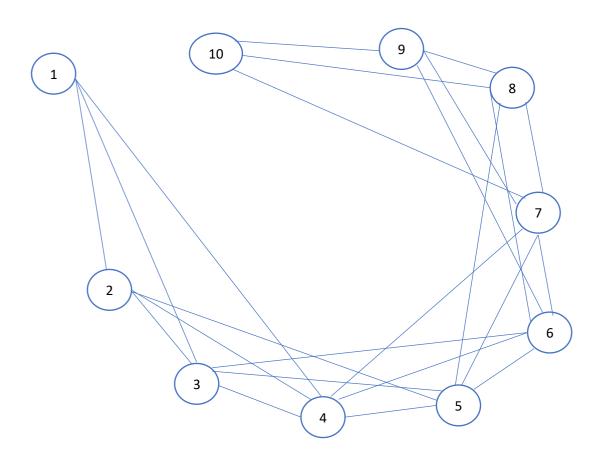


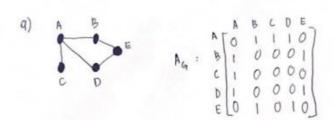
# DISCRETE STRUCTURE (SECI 1013-03)

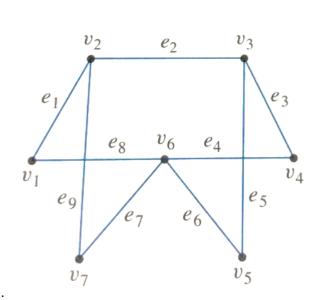
SEMESTER 1-2020/2021

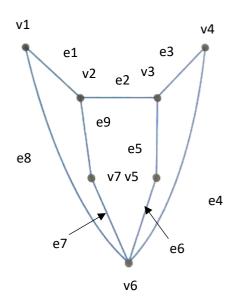
ASSIGNMENT# 4

GROUP 13


### **GROUP MEMBERS:**


| NAME                                | MATRIC NO. |
|-------------------------------------|------------|
| 1. LEE JIA XIAN                     | A20EC0200  |
| 2. RISHMA FATHIMA BINTI BASHER      | A20EC0137  |
| 3. SAKINAH AL'IZZAH BINTI MOHD ASRI | A20EC0142  |


## **LECTURER'S NAME:**


DR. NOR AZIZAH BINTI ALI

24 edges









### **Question 4**

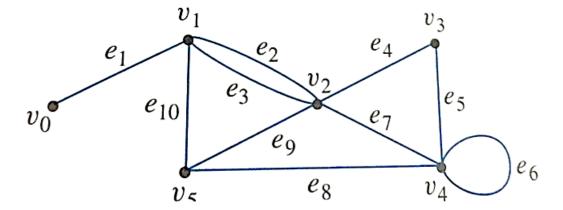
$$A_{H} = \begin{bmatrix} V_{1} & V_{2} & V_{3} & V_{4} \\ V_{2} & 0 & 0 & 0 \\ 0 & 1 & 1 & 2 \\ V_{3} & 0 & 1 & 1 & 0 \\ V_{4} & 0 & 2 & 0 & 0 \end{bmatrix}$$

a) Both graphs have 5 vertices and 5 edges.

# $\frac{\text{Graph } G1}{\deg(v1)} = 2$ $\deg(v2) = 2$ $\deg(v3) = 3$ $\deg(v4) = 2$ $\deg(v5) = 1$ $\frac{\text{Graph } G2}{\deg(u1)} = 1$ $\deg(u2) = 3$ $\deg(u3) = 2$ $\deg(u4) = 2$ $\deg(u5) = 2$

Therefore, both graph is not isomorphic because the graph does not have same degrees for the corresponding vertices.

b) Both graphs have 5 vertices and 6 edges.


### Graph H1

deg(a1) = 1 deg(a2) = 1 deg(a3) = 3 deg(a4) = 2deg(a5) = 5

### Graph H2

 $\frac{deg(x1) = 3}{deg(x2) = 1} \\
deg(x3) = 3 \\
deg(x4) = 3 \\
deg(x5) = 2$ 

Therefore, both graph is not isomorphic because the graph does not have same degrees for the corresponding vertices.



a) 
$$v_0 e_1 v_1 e_{10} v_5 e_9 v_2 e_2 v_1 = \text{trail}$$

b) 
$$v_4 e_7 v_2 e_9 v_5 e_{10} v_1 e_3 v_2 e_9 v_5 = \text{walk}$$

c) 
$$v_2 = \text{vertex}$$

d) 
$$v_5 e_9 v_2 e_4 v_3 e_5 v_4 e_6 v_4 e_8 v_5 = \text{circuit}$$

e) 
$$v_2 e_4 v_3 e_5 v_4 e_8 v_5 e_9 v_2 e_7 v_4 e_5 v_3 e_4 v_2 = \text{trail}$$

f) 
$$v_3 e_5 v_4 e_8 v_5 e_{10} v_1 e_3 v_2 = path$$

### **Question 7**

- a) There are 3 paths.
- b) There are 4 trails.
- c) There are 0 walk.

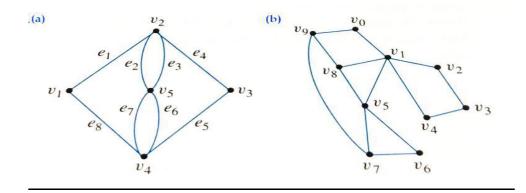
### **Question 8**

a)

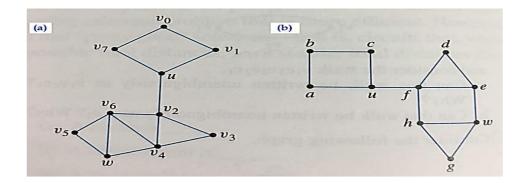
| Vertex | V1 | V2 | V3 | V4 | V5 |
|--------|----|----|----|----|----|
| Degree | 2  | 4  | 2  | 4  | 4  |

Therefore, it is an eular circuit because every vertex is connected, and every vertex have even degree.

b)


| Vertex | V0 | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 |
|--------|----|----|----|----|----|----|----|----|----|----|
| Degree | 2  | 5  | 2  | 2  | 2  | 4  | 2  | 3  | 3  | 3  |

Therefore, it is an eular circuit because every vertex is connected, and every vertex have even degree. Hence, graph a is an eular circuit.


There is a Euler path from u to w at a).

The Euler path is (U,  $V_7, V_0, V_1, U, V_2, V_6, V_5, W, V_4, V_3, V_2, V_4, V_6, W$ )

# **Question 10**



Answer: there is no Hamiltonian circuit in graph (a) – (b).



Answer: there is no Hamiltonian circuit in graph (a) - (b).

m=ary tree=3

n=vertices=100

$$l = \frac{(m-1)n+1}{m}$$

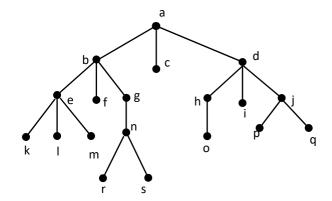
$$=\frac{(3-1)100+1}{3}$$

$$=\frac{(2)(100)+1}{3}$$

$$=\frac{201}{3}$$

=67 leaves

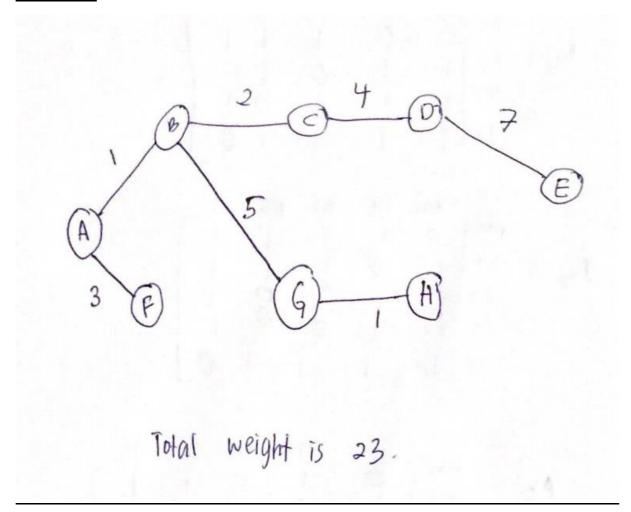
# **Question 12**


- a) Root = a

b) Internal vertices = 
$$i = \frac{n-1}{m}$$

$$i = \frac{18-1}{3}$$

$$i = \frac{17}{3}$$


- c) Leaf = b, e,k,l,m,f,g,n,r,s,c,d,h,o,I,j,p,q
- d) Children of n = r, s
- e) Parent of e = b
- f) Siblings of k = l, m
- g) Proper ancestor of q = j, d,a
- h) Proper descendent of b = r, s,n,g,f,k,l,m,e



preorder: a, b, e, k, l, m, f, g, n, r, s, c, d, h, o, i, j, p, q

inorder: k, e, l, m, b, f, r, n, s, g, a, c, o, h, d, i, p, j, q

postorder : k ,l ,m ,e ,f ,r ,s ,n ,g ,b ,c ,o ,h, i ,p, q ,j ,d ,a



# Question 15

| Iteration | S                 | N                     | L(M) | L(N) | L(O) | L(P) | L(Q) | L(R) | L(S) | L(T) |
|-----------|-------------------|-----------------------|------|------|------|------|------|------|------|------|
| 0         | {}                | $\{M,N,O,P,Q,R,S,T\}$ | 0    | ∞    | ∞    | ∞    | ∞    | 8    | ∞    | 8    |
| 1         | {M}               | { N,O,P,Q,R,S,T}      | 0    | 4    | ∞    | 2    | ∞    | 5    | ∞    | 8    |
| 2         | {M,P}             | $\{N,O,Q,R,S,T\}$     | 0    | 4    |      | 2    | 6    | 5    | 5    |      |
| 3         | {M,P,N}           | ${O,Q,R,S,T}$         | 0    | 4    | 10   | 2    | 6    | 5    | 5    |      |
| 4         | {M,P,N,R}         | {O,Q,S,T}             | 0    | 4    | 7    | 2    | 6    | 5    | 5    | 6    |
| 5         | {M,P,N,R,S}       | { O,Q,T}              | 0    | 4    | 7    | 2    | 6    | 5    | 5    | 6    |
| 6         | $\{M,P,N,R,S,Q\}$ | {O,T}                 | 0    | 4    | 7    | 2    | 6    | 5    | 5    | 6    |
| 7         | {M,P,N,R,S,Q,T}   | {0}                   | 0    | 4    | 7    | 2    | 6    | 5    | 5    | 6    |

The shortest path  $= M \rightarrow N \rightarrow T$