

School of Computing Faculty of Engineering UNIVERSITI TEKNOLOGI MALAYSIA

SUBJECT : SECR1013 DIGITAL LOGIC

SESSION/SEM : Session 02/SEM 1

LAB 3 : SYNCHRONOUS DIGITAL COUNTER

NAME : SAKINAH AL'IZZAH BINTI MOHD ASRI

DATE : 29/1/2021

Lab #3

Identifying the Properties of a Synchronous Counter

A. Aims

- 1) Expose the student with experience on constructing synchronous counter circuit using Flip-Flop IC, Basic Gate ICs, Breadboard and ETS-5000 Digital Kit.
- 2) Promote critical thinking among students by analysing the given circuit and identifying the behaviour of the digital circuit.

B. Objectives

- 1) Implement a synchronous counter circuit into physical circuit using Breadboard, Flip-Flops, Basic Gates and Switches.
- 2) Completing the next-state table of the counter circuit.
- 3) Sketch the state diagram of the counter circuit.
- 4) Identify the properties of the counter.

C. Materials And Equipment

Materials and equipment required for this lab are as follows:

Item Name	Number of Item
1. Breadboard	1
2.7408 Quad 2-Input AND	1
3. 7404 Hex Inverter	1
4. 7432 Quad 2-input OR	1
5. 7476 Dual J-K Flip Flop	1
6. ETS-5000 Digital Kit	1

D. Preliminary Works

1) Determine the logic level for each input combinations in Table 1 so that the desired result can be realized.

Table 1

Desired Result	PRE	CLR	J	K	CLK	Q
Set initial value Q = 1	0	1	X	X		1
Output Q stays the same	1	1	0	0	1	1
Output Q become 0, no change	1	1	0	1	↓ U	0
in asynchronous input						
Output Q is not the previous Q	1	1	1	1	↓ U	1
RESET Q	1	1	0	1	1	0
SET Q	1	1	1	0	1	1

- 2) Answer all questions.
- a) Which state that JK flip-flop has, but not on SR flip-flop.

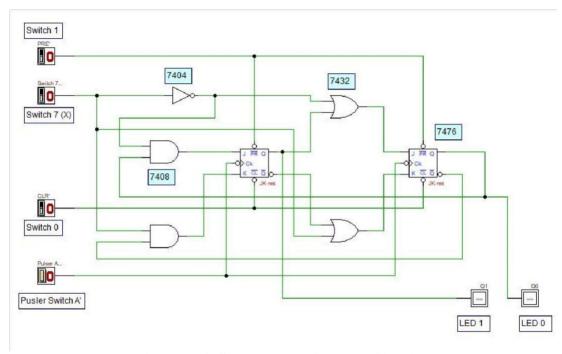
Toggle state because in SR flip flop the output is invalid when S=1 and R=1. Meanwhile in JK flip flop the output toggle when J=1 and K=1.

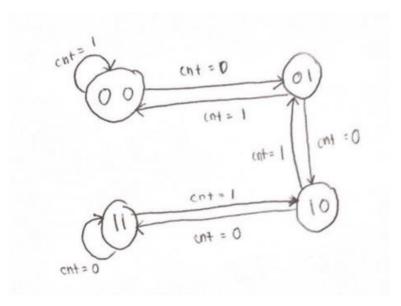
b) Identify whether the JK flip flop in 7476, is a positive-edge triggered or negative-edge triggered flip flop.

negative-edge triggered flip flop because in IC 7476 has two negative-edge triggered JK flip flop.

E. Lab Activities

1) You are given a counter circuit as shown in Figure 4.




Figure 4: A Synchronous Counter Circuit

- 2) By using all materials and equipment's listed in section C, construct the physical circuit of Figure 4. (Make sure all ICs are connected to Vcc and GND).
- 3) Investigate the behaviour of the counter by observing the next state of the counter for all combination of *Present State* and *X* values. Complete the *NextState* table of the counter in Table 2. Ensure the Switch 0 is in HIGH state. (0=LOW, 1=HIGH)

Table 2

Switch 7	Pr	esent State	Next State	
X	Q1	Q0	Q1	Q0
Λ	LED 1	LED 0	LED 1	LED 0
0	0	0	0	1
0	0	1	1	0
0	1	0	1	1
0	1	1	1	1
1	0	0	0	0
1	0	1	0	0
1	1	0	0	1
1	1	1	1	0

4) By referring to the *Next-State* in Table 2, sketch the state diagram of the counter.

- 5) By referring to the Next-State in Table 2 and the state diagram in (4), answer all questions.
 - a) What is the main indicator to decide that the counter is a synchronous counter? Pulser Switch A' because it's a clock input
 - b) How many states are available for the counter and what are they?

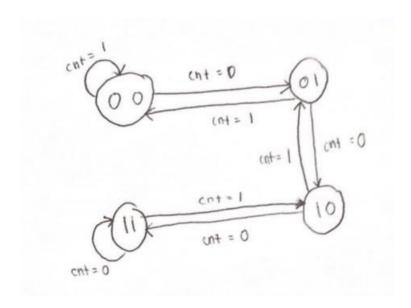
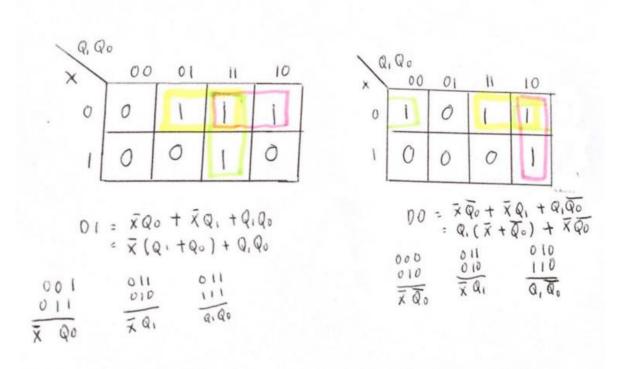
4 states available for the counter, when $2^2=4$. The counter is 00,01,10, and 11.

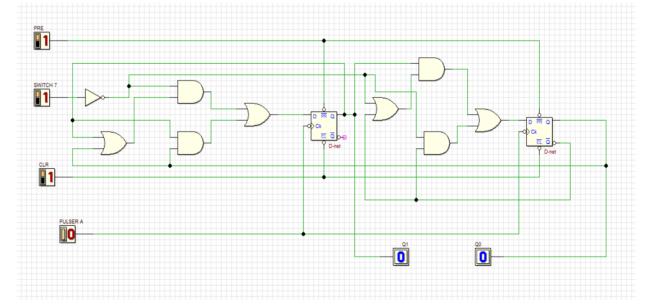
- c) What is the function of Switch 7 (X) in the circuit? Counting sequence up or down
- d) What is the function of Switch 0 and Switch 1 in the circuit? Switch 0 as clear (CLR') to reset the output to 0. Switch 1 as preset (PRE') to set initial value of 1 to the output.
- e) Is the counter a saturated counter or recycle counter?
 Saturated counter because the counter repeat the maximum count if count up and repeat the minimum if count down.

- 6) Referring to state diagram in 4, draw and built a synchronous counter using D flip-flop.
- a) Built the next state and transition table using the header in Table 3

D flip flop excitation table

Present state	Next state	D
0	0	0
0	1	1
1	0	0
1	1	1


Table 3

Input X	Presen	Present State Next St		State	D FF Transition	
	Q1	Q0	Q1+	Q0+	D1	D 0
0	0	0	0	1	0	1
0	0	1	1	0	1	0
0	1	0	1	1	1	1
0	1	1	1	1	1	1
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	0	1	0	1
1	1	1	1	0	1	0

b) Get the optimized Boolean expression.

c) Draw the complete final circuit design in Deeds.

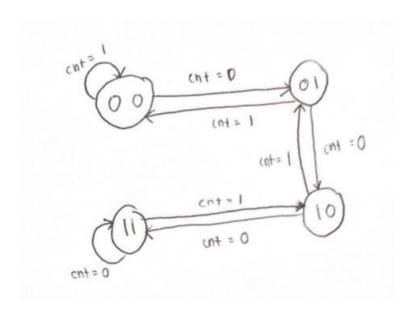
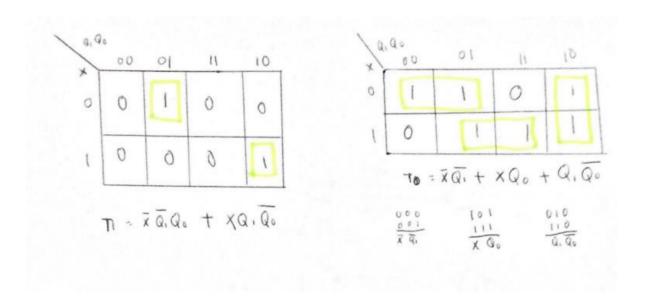
d) Simulate the circuit to prove that your Table 3 is correct.

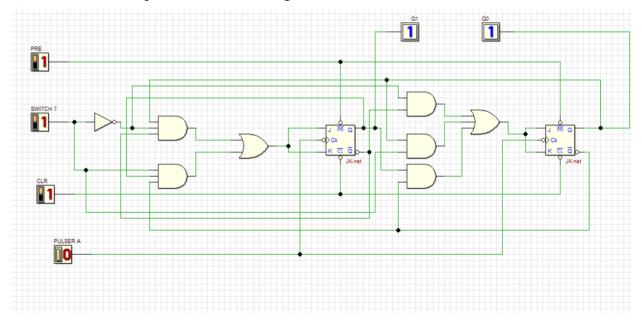
7) Repeat steps in Q(6) using T flip-flop

a) Built the next state and transition table using the header in Table $3\,$

T flip flop excitation table

Present state	Next state	T
0	0	0
0	1	1
1	0	1
1	1	0


Table 3

Input X	Presen	esent State Next State T FF		Present State Next State T FF Tr		Next State		ansition
	Q1	Q0	Q1+	Q0+	T1	Т0		
0	0	0	0	1	0	1		
0	0	1	1	0	1	1		
0	1	0	1	1	0	1		
0	1	1	1	1	0	0		
1	0	0	0	0	0	0		
1	0	1	0	0	0	1		
1	1	0	0	1	1	1		
1	1	1	1	0	0	1		

b) Get the optimized Boolean expression.

c) Draw the complete final circuit design in Deeds.

d) Simulate the circuit to prove that your Table 3 is correct.