

**School of Computing
Faculty of Engineering
UNIVERSITI TEKNOLOGI MALAYSIA**

SUBJECT : SECR1013 DIGITAL LOGIC

SESSION/SEM : 1

LAB 3 : SYNCHRONOUS DIGITAL COUNTER

NAME : Muhammad Zaki Mufthi & Muhammad Arkan Al Rasyid

DATE : 28/01/2021

Lab #3

Identifying the Properties of a Synchronous Counter

A. Aims

- 1) Expose the student with experience on constructing synchronous counter circuit using Flip-Flop IC, Basic Gate ICs, Breadboard and ETS-5000 Digital Kit.
- 2) Promote critical thinking among students by analysing the given circuit and identifying the behaviour of the digital circuit.

B. Objectives

The objectives of this lab activity are to:

- 1) Implement a synchronous counter circuit into physical circuit using Breadboard, Flip-Flops, Basic Gates and Switches.
- 2) Completing the next-state table of the counter circuit.
- 3) Sketch the state diagram of the counter circuit.
- 4) Identify the properties of the counter.

C. Materials And Equipment

Materials and equipment required for this lab are as follows:

Item Name	Number of Item
1. Breadboard	1
2. 7408 Quad 2-Input AND	1
3. 7404 Hex Inverter	1
4. 7432 Quad 2-input OR	1
5. 7476 Dual J-K Flip Flop	1
6. ETS-5000 Digital Kit	1

D. Preliminary Works

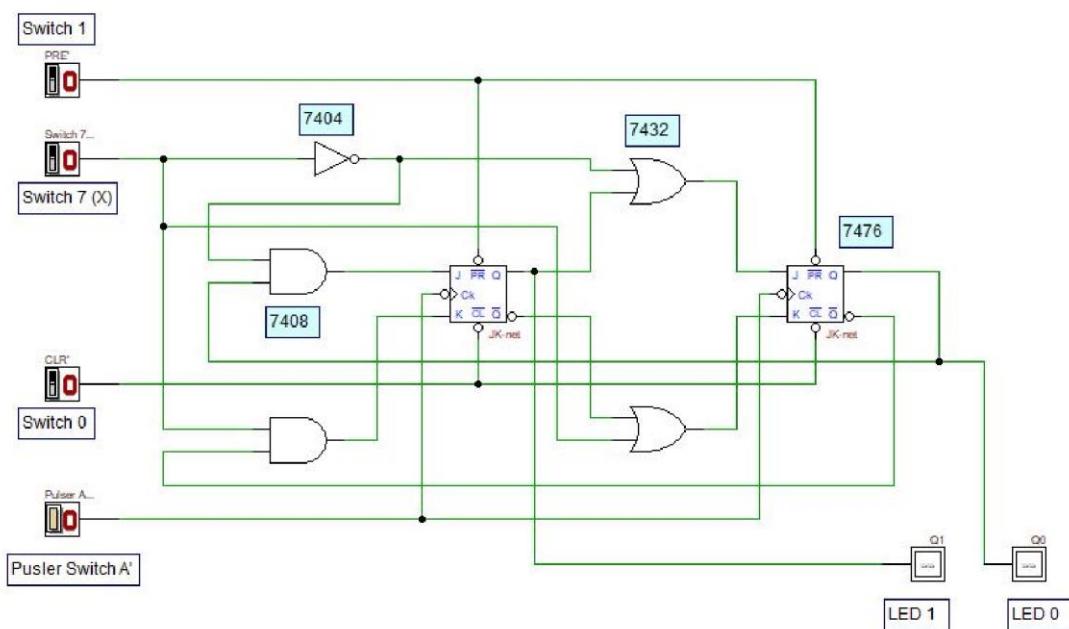
1) Determine the logic level for each input combinations in Table 1 so that the desired result can be realized.

Table 1

Desired Result	\overline{PRE}	\overline{CLR}	J	K	CLK	Q
Set initial value Q = 1	0	1	X	X	--	1
Output Q stays the same	1	1	0	0	↓	1
Output Q become 0, no change in asynchronous input	1	1	0	1	↓	0
Output Q is not the previous Q	1	1	1	1	↓	1
RESET Q	1	1	0	1	↓	0
SET Q	1	1	1	1	↓	1

2) Answer all questions.

a) Which state that JK flip-flop has, but not on SR flip-flop.

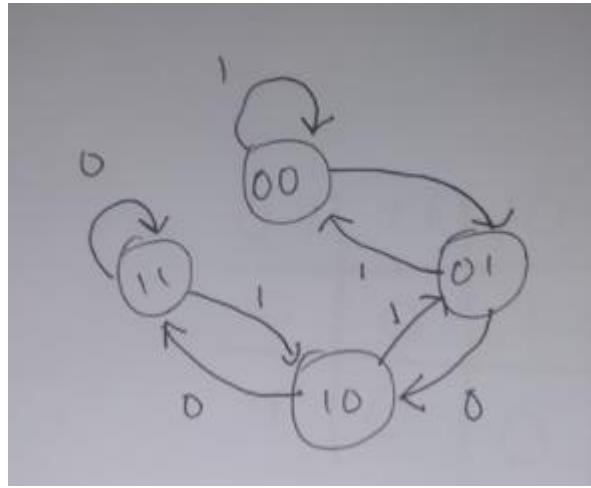

JK flip-flop have Toggle when SR flip-flop is invalid

b) Identify whether the JK flip flop in 7476, is a positive-edge triggered or negative-edge triggered flip flop.

Negative-edge triggered. Cause the clock pulse is falling (falling edge or negative edge).

E. Lab Activities

1) You are given a counter circuit as shown in Figure 4.


Figure 4: A Synchronous Counter Circuit

- 2) By using all materials and equipment's listed in section C, construct the physical circuit of Figure 4. (Make sure all ICs are connected to Vcc and GND).
- 3) Investigate the behaviour of the counter by observing the next state of the counter for all combination of *Present State* and *X* values. Complete the *NextState* table of the counter in Table 2. Ensure the Switch 0 is in HIGH state.
(0=LOW, 1=HIGH)

Table 2

Switch 7	Present State		Next State	
X	Q1 LED 1	Q0 LED 0	Q1 LED 1	Q0 LED 0
0	0	0	0	1
0	0	1	1	0
0	1	0	1	1
0	1	1	1	1
1	0	0	0	0
1	0	1	0	0
1	1	0	0	1
1	1	1	1	0

4) By referring to the *Next-State* in Table 2, sketch the state diagram of the counter.

5) By referring to the *Next-State* in Table 2 and the state diagram in (4), answer all questions.

a) What is the main indicator to decide that the counter is a synchronous counter?

PRE High State (Switch 1 = 1) and CLR High State (Switch 0= 1)

b) How many states are available for the counter and what are they?

$$2^2 = 4. 00, 01, 10, 11.$$

c) What is the function of Switch 7 (X) in the circuit?

Up down ripple counter

d) What is the function of Switch 0 and Switch 1 in the circuit?

As PRE (Set) and CLR (Reset) and if both state are high (Switch 0 = 1 and Switch 1 = 1) the circuit will be Synchronous counter circuit.

e) Is the counter a saturated counter or recycle counter?

Saturated Counter. Cause 00 > 01 > 10 > 11 >11 and 11 >10 > 01 > 00 > 00

6) Referring to state diagram in 4, draw and built a synchronous counter using D flip-flop.

a) Built the next state and transition table using the header in Table 3

$$\mathbf{D = Q_{n+1}}$$

Table 3

Input X	Present State		Next State		JK FF Transition	
	Q1	Q0	Q1+	Q0+	D1	D0
0	0	0	0	1	0	1
0	0	1	1	0	1	0
0	1	0	1	1	1	1
0	1	1	1	1	1	1
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	0	1	0	1
1	1	1	1	0	1	0

b) Get the optimized Boolean expression.

$Q_1 Q_0$	00	01	11	10
X	0	1	1	1
1	0	0	1	0

$D_1 = (X'Q_1'Q_0 + X'Q_1Q_0) + (X'Q_1Q_0' + X'Q_1Q_0) + (X'Q_1Q_0 + XQ_1Q_0)$
 $= (X'Q_0)(Q_1' + Q_1) + (X'Q_1)(Q_0' + Q_0) + (X' + X)(Q_1Q_0 + Q_1Q_0)$
 $= X'Q_0 + X'Q_1 + Q_1Q_0$

$Q_1 Q_0$	00	01	11	10
X	1	0	1	1
1	0	0	0	1

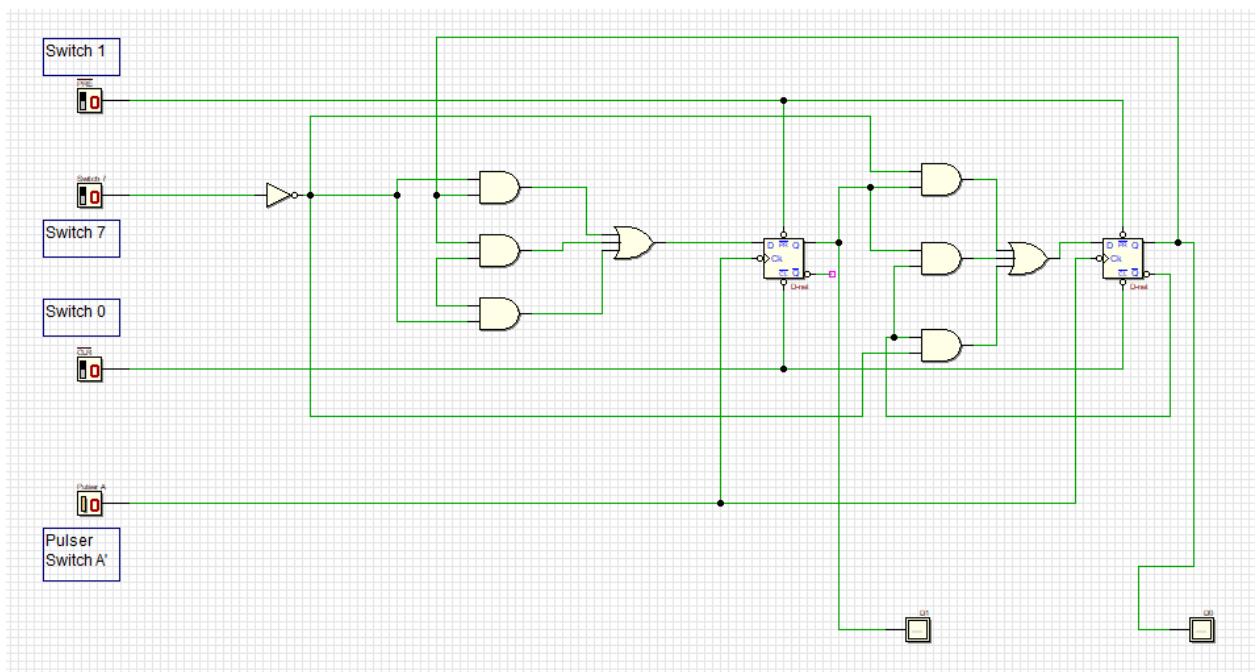
$D_0 = (X'Q_1'Q_0' + X'Q_1Q_0') + (X'Q_1Q_0 + XQ_1Q_0') + (X'Q_1Q_0' + XQ_1Q_0)$
 $= (X'Q_0')(Q_1' + Q_1) + (X'Q_1)(Q_0 + Q_0') + (X + X')(Q_1Q_0)$
 $= X'Q_0' + X'Q_1 + Q_1Q_0'$

c) Draw the complete final circuit design in Deeds.

7) Repeat steps in Q(6) using T flip-flop.

Different input = 1 Same input = 0

Input X	Present State		Next State		JK FF Transition	
	Q1	Q0	Q1+	Q0+	T1	T0
0	0	0	0	1	0	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	0	0
1	0	0	0	0	0	0
1	0	1	0	0	0	1
1	1	0	0	1	1	1
1	1	1	1	0	0	1


b)	$Q_1 Q_0$	00	01	11	10
	x				
	0	0	1	0	0
	1	0	0	0	1

$$T_1 = x'Q_1'Q_0 + xQ_1Q_0'$$

		00	01	11	10
		0	1	0	1
		0	1	1	1
$Q_1 Q_0$	x	00	01	11	10
0		1	1	0	1
1		0	1	1	1

$$T_0 = x'Q_1 + xQ_0 + Q_1'Q_0'$$

C).

