SUBJECT: SECR1013 DIGITAL LOGIC

SESSION/SEM : SECTION 02 / SEM 1 2020/2021

LAB 3 : SYNCHRONOUS DIGITAL COUNTER

NAME : MYZA NAZIFA BINTI NAZRY

DATE : 26 JANUARY 2021

Lab #3

Identifying the Properties of a Synchronous Counter

A. Aims

- 1) Expose the student with experience on constructing synchronous counter circuit using Flip-Flop IC, Basic Gate ICs, Breadboard and ETS-5000 Digital Kit.
- 2) Promote critical thinking among students by analysing the given circuit and identifying the behaviour of the digital circuit.

B. Objectives

The objectives of this lab activity are to:

- 1) Implement a synchronous counter circuit into physical circuit using Breadboard, Flip-Flops, Basic Gates and Switches.
- 2) Completing the next-state table of the counter circuit.

- 3) Sketch the state diagram of the counter circuit.
- 4) Identify the properties of the counter.

C. Materials and Equipment

Materials and equipment required for this lab are as follows:

Item Name	Number of Item
1. Breadboard	1
2. 7408 Quad 2-Input AND	1
3. 7404 Hex Inverter	1
4. 7432 Quad 2-input OR	1
5. 7476 Dual J-K Flip Flop	1
6. ETS-5000 Digital Kit	1

D. Preliminary Works

1) Determine the logic level for each input combinations in Table 1 so that the desired result can be realized.

Table 1

Desired Result	\$ <i>PRE</i> \$\$\$\$\$	CLR\$\$\$\$\$\$	J	K	CLK	Q
Set initial value Q = 1	0	1	X	X		1
Output Q stays the same	1	1	1	0	#	1
Output Q become 0, no change in asynchronous input	1	1	0	1	#	0
Output Q is not the previous Q	1	1	1	1	\Rightarrow	1
RESET Q	1	1	0	1	⇒	0
SET Q	1	1	1	0	#	1

- 2) Answer all questions.
- a) Which state that JK flip-flop has, but not on SR flip-flop.

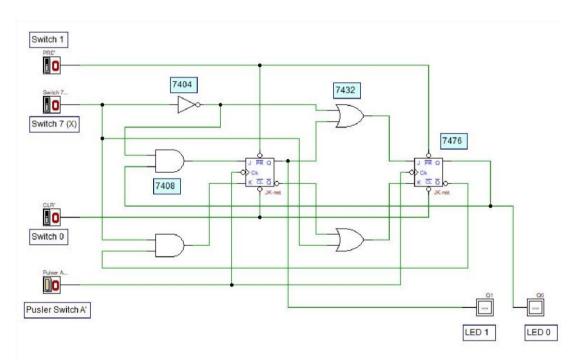
Toggle.

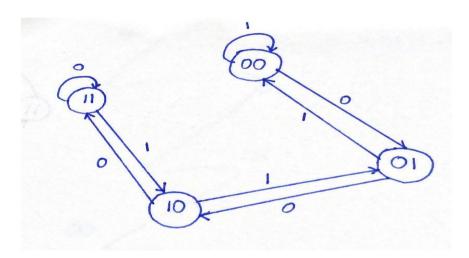
b) Identify whether the JK flip flop in 7476, is a positive-edge triggered or negative edge triggered flip flop.

It is a negative edge triggered flip flop.

E. Lab Activities

1) You are given a counter circuit as shown in Figure 4.



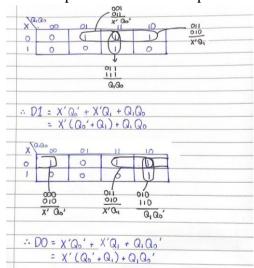

Figure 4: A Synchronous Counter Circuit

- 2) By using all materials and equipment's listed in section C, construct the physical circuit of Figure 4. (Make sure all ICs are connected to Vcc and GND).
- 3) Investigate the behaviour of the counter by observing the next state of the counter for all combination of *Present State* and *X* values. Complete the *NextState* table of the counter in Table 2. Ensure the Switch 0 is in HIGH state. (0=LOW, 1=HIGH)

Table 2

Switch 7	h 7 Present State N		Ne	ext State	
X	Q1 LED 1	Q0 LED 0	Q1 LED 1	Q0 LED 0	
0	0	0	0	1	
0	0	1	1	0	
0	1	0	1	1	
0	1	1	1	1	
1	0	0	0	0	
1	0	1	0	0	
1	1	0	0	1	
1	1	1	1	0	

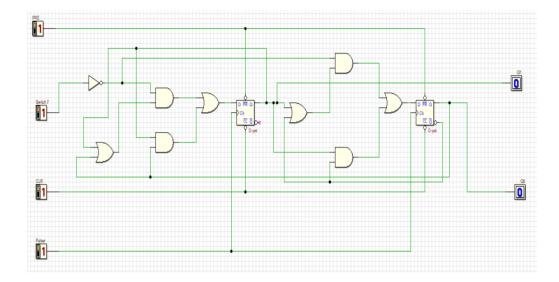
4) By referring to the *Next-State* in Table 2, sketch the state diagram of the counter.


- 5) By referring to the *Next-State* in Table 2 and the state diagram in (4), answer all questions.
 - a) What is the main indicator to decide that the counter is a synchronous counter? The clock for both flip flops are the same which is Pusler Switch A'.
 - b) How many states are available for the counter and what are they? 4 which are 00, 01, 10 and 11.
 - c) What is the function of Switch 7 (X) in the circuit? It acts as a counting sequence.
 - d) What is the function of Switch 0 and Switch 1 in the circuit? To ensure counter operate in toggle mode.

- e) Is the counter a saturated counter or recycle counter? It is a saturated counter.
- 6) Referring to state diagram in 4, draw and built a synchronous counter using D flip-flop.
 - a) Built the next state and transition table using the header in Table 3

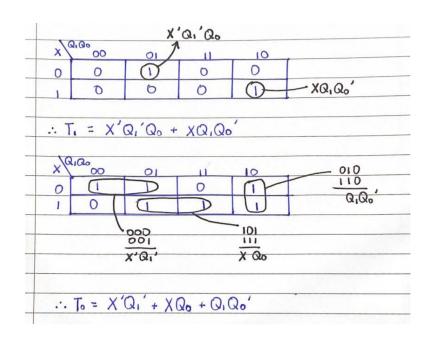
Table 3

Input	Presei	nt State	Next State		D FF Transition		
X	Q1	Q0	Q1+	Q0+	D1	D0	
0	0	0	0	1	0	1	
0	0	1	1	0	1	0	
0	1	0	1	1	1	1	
0	1	1	1	1	1	1	
1	0	0	0	0	0	0	
1	0	1	0	0	0	0	
1	1	0	0	1	0	1	
1	1	1	1	0	1	0	

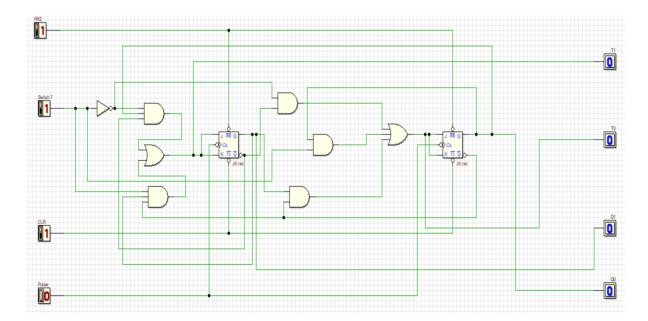

b) Get the optimized Boolean expression.

$$D1 = X' (Q_0' + Q_1) + Q_1Q_0$$

$$D0 = X'(Q_0' + Q_1) + Q_1Q_0'$$


c) Draw the complete final circuit design in Deeds.

- d) Simulate the circuit to prove that your Table 3 is correct.
- 7) Repeat steps in Q(6) using T flip-flop.


Input	Presei	nt State	Next State		T FF Transition		
X	Q1	Q0	Q1+	Q0+	T1	T0	
0	0	0	0	1	0	1	
0	0	1	1	0	1	1	
0	1	0	1	1	0	1	
0	1	1	1	1	0	0	
1	0	0	0	0	0	0	
1	0	1	0	0	0	1	
1	1	0	0	1	1	1	
1	1	1	1	0	0	1	

Boolean expression:

$$\begin{split} T1 &= X'Q_1'Q_0 + XQ_1Q_0'\\ T0 &= X'Q_1' + XQ_0 + Q_1Q_0' \end{split}$$

Final Circuit:

