
Jumail Bin Taliba
School of Computing, UTM

July 2020

Mobile Application Architecture

MVVM Architecture
Lecture and Demo

Agenda

• Introduction to MVVM

•MVVM Components

•How Provider Relates to
MVVM

• Setup MVVM Project

•Code Refactoring

•Discussion

• Summary

Introduction to MVVM

• MVVM stands for Model View Viewmodel

• Proposed by Microsoft for their WPF (a UI Framework for .NET).

• An architectural Pattern, other similar thing: MVC, MVP
• Separation of concern – split code rather than putting them in a single place

• For maintainability and extendibility, and easy for unit testing

• Platform-agnostic

• Has clear separation of the UI (View) and application logic (Viewmodel and
Model)

• Great for applications with interactive UI

• Has different variations and implementations

• Key principle: View Models synchronize Views and Models

Data Source

MVVM Components

View

View Model

Service
M

o
d

el

Local
Storage

Remote Data
Source

Device
sensors

View

• Handles what user sees and interacts with

• In Flutter, they are widgets

• Example: screens, buttons, app bar, list view, etc.

• View has reference to View Model (as shown by
the solid arrow line in the diagram)

Data Source

MVVM Components (2)

View

View Model

Service
M

o
d

el

Local
Storage

Remote Data
Source

Device
sensors

View Model

• The model of view.
• View may display data differently from the data source, e.g. date

with different format.

• Viewmodel responsibles to format the data source to the form that
the view requires.

• It synchronizes between UI and what is going on behind the
scene

• It does not know about the view

• It only exposes its data to be observed by the View (as

shown by the dashed arrow line in the diagram)

• It adopts the Publish-Subscribe design pattern

Publish

Subscribe

Data Source

MVVM Components (3)

View

View Model

Service
M

o
d

el

Local
Storage

Remote Data
Source

Device
sensors

Service and Model

• Service gets data (requested by View via the View Model)
from the data source

• Service does the actual work

• View Model only takes requests from View and forward
them to service.

• Model is meant for representing data in a more convenient
way

Using Providers - Revisit

MaterialApp

Provider1

MultiProvider

State

Screen 3

widget

widget widget

Screen 2

widget

widget widget

Screen 1

widget

widget widget

Provider2

State

Services

Service Locator

Other dependencies

Implementing MVVM with Providers

MaterialApp

ChangeNotifierProvider

MultiProvider

ChangeNotifier<Data>

Screen 3

widget

widget widget

Screen 2

widget

widget widget

Screen 1

widget

widget widget

ChangeNotifierProvider

ChangeNotifier<Data>

Using ChangeNotifierProvider

• to allow update from UI

• for state management

Services

Service Locator

Other dependencies

Implementing MVVM with Providers (2)

MaterialApp

ChangeNotifierProvider

MultiProvider

Viewmodel<Model>

Screen 3

widget

widget widget

Screen 2

widget

widget widget

Screen 1

widget

widget widget

ChangeNotifierProvider

Viewmodel<Model>

• ChangeNotifiers are View Models

• Models are held by ChangeNotifiers

Services

Service Locator

Other dependencies

Refactoring: Move View Models to Service Locator

MaterialApp

ChangeNotifierProvider

MultiProvider

View

widget

widget widget

widget

View

widget View

View

widget

widget widget

ChangeNotifierProvider

Services

Service Locator

Other dependencies

View Models

Viewmodel<Model>

Viewmodel<Model>

Refactoring: Each Consumer Has its Own Provider

MaterialApp

View

widget

widget widget

Services

Service Locator

Other dependencies

View Models

Viewmodel<Model>

Viewmodel<Model>

widget

widget widget

ChangeNotifierProvider

widget

View

ChangeNotifierProvider

ChangeNotifierProvider

widget

View

View

ChangeNotifierProvider

Demo
MVVM Architecture

https://github.com/jumail-utm/architecture_mvvm

Source Code

https://github.com/jumail-utm/architecture_mvvm

About The Demo

LoginScreen

What we are going to build

TodolistScreen

Logout

Add a new
todo item

onTap: Toggle status

onLongPressed: Delete the todo item

The todo list displayed for the active
user

https://liveutm-my.sharepoint.com/personal/jumail_live_utm_my/Documents/Works/Teaching/Courses/Programming%20Technique%20II/SCSJ1023-20192020-1/Lectures/02-Introduction%20to%20Classes%20and%20Objects.pptx?web=1
https://liveutm-my.sharepoint.com/personal/jumail_live_utm_my/Documents/Works/Teaching/Courses/Programming%20Technique%20II/SCSJ1023-20192020-1/Lectures/02-Introduction%20to%20Classes%20and%20Objects.pptx?web=1

About the Demo (2)

MaterialApp

LoginScreen

Rest Service

Service Locator

View Models

UserViewmodel

TodoViewmodel

How we are going to build it

TodolistScreen

Widget Tree

Database

About the Demo (3)

LoginScreen

Rest Services

Service Locator

View Models

UserViewmodel

TodoViewmodel

How we are going to build it

ChangeNotifierProvider

Scaffold

ListView

ListTileListTile
ListTile

Consumer

LoginScreen
Widget Tree

Database

Change
current user

get the user
list, to build
the ListView

https://liveutm-my.sharepoint.com/personal/jumail_live_utm_my/Documents/Works/Teaching/Courses/Programming%20Technique%20II/SCSJ1023-20192020-1/Lectures/02-Introduction%20to%20Classes%20and%20Objects.pptx?web=1

TodolistScreen

About the Demo (4)

Rest Services

Service Locator

View Models

UserViewmodel

TodoViewmodel

How we are going to build it

Delete todo,
Toggle status

get the todo list,
to build the
ListView

TodolistScreen

ChangeNotifierProvider

Scaffold

ListView

ListTile ListTile

ListTile

Consumer

ChangeNotifierProvider

AppBar

Avatar Username

Consumer

ChangeNotifierProvider

Consumer

Widget Tree

get
user

https://liveutm-my.sharepoint.com/personal/jumail_live_utm_my/Documents/Works/Teaching/Courses/Programming%20Technique%20II/SCSJ1023-20192020-1/Lectures/02-Introduction%20to%20Classes%20and%20Objects.pptx?web=1

Project File Structure

Project File Structure (2)

• Each screen has its own folder

• Views and viewmodels for the
screen are put in the same folder

• The widgets folder in each screen
folder is meant for refactoring
widgets from the screen. In case a
widget code is too large to be
placed in the same screen code.

• View and Viewmodel are generic
classes used to build the screens.

• The widgets folder at outside are for
custom widgets shared between
screens.

Project File Structure (3)

• Shared services are put at root folder

• A service may have different types of
implementations, such actual and mock
service

• Thus, create a folder for each service

• Services are registered in Service Locator
(at app/dependencies.dart)

The Codebase

Codebase

MaterialApp

TodolistScreen

UserService

Service Locator

FutureProvider
ChangeNotifierProxyProvider

MultiProvider

List<User>
TodoListNotifier

Current Implementation using Providers

TodoService

LoginScreen

ChangeNotifierProvider

ValueNotifier<User>

List<Todo>

Widget Tree

The todos and users collections

Setup Service Locator

Register dependencies to Service Locator

Setup Service Locator (2)

Initialize get_it in main()

Working on LoginScreen

Tasks to do for Login Screen

LoginScreen

Rest Services

Service Locator

View Models

LoginViewmodel

ChangeNotifierProvider

Scaffold

ListView

ListTileListTile
ListTile

Consumer

Widget Tree
Database

Change
current user

get the user
list, to build
the ListView

• Define LoginViewmodel

• Move LoginViewmodel to Service
Locator

• The view has its own provider and
consumer

• Refactor DI from using Provider.of()
to service locator

Working on TodolistScreen

Tasks to do for the Todolist Scren

Rest Services

Service Locator

View Models

UserViewmodel

TodoViewmodel

Delete todo,
Toggle status

get the todo list,
to build the
ListView

TodolistScreen

ChangeNotifierProvider

Scaffold

ListView

ListTile ListTile

ListTile

Consumer

ChangeNotifierProvider

AppBar

Avatar Username

Consumer

ChangeNotifierProvider

Consumer

Widget Tree

get
user

Define Generic View and Viewmodel
Classes

Refactor Both Screen Code Using the
Generic Classes

Define Convenient View Classes

Split View to Multiple Child Views

Discussion

Service Locator

View Models

Viewmodel<Model>

Viewmodel<Model>

widget

widget widget

ChangeNotifierProvider

View

Can we use Viewmodel without Provider?

widget

widget widget

View

Our implementation

Implementation Without
Provider

Discussion (2)

• Define other types of convenient Views
• Replace ChangeNotifierProvider with ChangeNotifierProxyProvider

• You may call these View classes like: ProxyView, ProxySelectorView, ProxyWidgetView

• Provide parameter onProgress on the generic View class for custom
Progress Indicator

Summary

•About MVVM

•Using Provider and Service
Locator for MVVM Projects

•Define Generic Classes for
Scalable Project

• Things to extend further

