
Mobile Application 
Architecture



Jumail Bin Taliba
School of Computing, UTM

July 2020

Mobile Application Architecture

Introduction



The Plan
• Dependency Injection

• Provider

• MVVM Architectural Pattern



Preview on Architecture

Mobile App

MVVM MVC

Back-end

• Views

• View Models

• Services

• Models



Jumail Bin Taliba
School of Computing, UTM

July 2020

Mobile Application Architecture

Dependency Injection
Lecture and Demo 



Agenda

• Introduction

•Global DI

•Constructor DI

• Inherited Widget DI

• Service Locator DI



Introduction to Dependency Injection (DI)

What is dependency?
• Code relies on other codes to accomplish its 

tasks.

What is dependency injection?
• How to supply or provide the dependencies to 

the requiring code.

• Several approaches:
• Global

• Constructor

• Inherited widget

• Service locator



Global DI

Data Service

Global Objects

Authentication 
Service

Other 
dependencies …



Demo
Global DI



https://github.com/jumail-utm/architecture_dependency

Project Source Code

https://github.com/jumail-utm/architecture_dependency


Constructor DI

Data Service

REST Data Service

Mock Data Service

• If a child widget is built inside the 
parent widget, there should not 
be any problem accessing the 
dependencies.

• If a child widget is defined in 
different class from the parent 
widget, the parent needs to 
forward or pass the dependencies 
via the child’s constructor.

• This approach is not suitable for 
depth widget trees.



Demo
Constructor DI



Inherited Widget DI

Widget Tree

MaterialApp

TodoInheritedWidget

Dependencies:

Data Service

TodoListScreen

Scaffold

ListView Plus Button

User Interface

• This approach solves the problem 
faced by constructor DI on a depth 
widget tree.

• All child widgets under the tree 
are able to access the 
dependencies in the top widget 
(TodoInheritedWidget)

• A child widget accesses the top 
widget using the of() method.

Example:

final dataService = TodoInheritedWidget.of(context).dataService



Inherited Widget DI (2)

This approach is commonly used in Flutter:
• Navigator.of(context).push(…)

• MediaQuery.of(context).orientation

• Theme.of(context).primaryColor

• Scaffold.of(context).openDrawer()

• Scaffold.of(context).showSnackBar(mySnackBbar)



Demo
Inherited Widget DI



Service Locator DI

Data Service

Service Locator

Authentication 
Service

Other 
dependencies …

• A global approach

• All dependencies are held in a central 
registry called service locator

• Consumer code access the 
dependencies via the service locator

• We’ll use the get_it package

• Different ways of DI registration:

• Factory – SL always gives a new instance

• Singleton – SL gives the same instance

• LazySingleton – Similar to Singleton except 
registration is not done immediately

Example:

DataService dataService = serviceLocator();



Demo
Service Locator DI


