
Jumail Bin Taliba
School of Computing, UTM

June 2020

Integrating with Backend

Backend Services
Part 1: Node JS and MySQL

Watch on YouTube

Set the playback speed 1.5X

See the timestamp in the description

Agenda

•Design Principles and Design
Patterns

• Local Development

• Setting Up Databases

•Writing Code for REST API

•Deployment

• Testing with Flutter App

SOLID Principles

• Single responsibility principle

• Open close principle

• Liskov substitution principle

• Interface segregation principle

• Dependency inversion principle

Why care?

• Software development is a collaborative work

• The intention of the principles is to make software easier to maintain
and to extend

Design Patterns

What are design patterns?

• Reusable solutions to repeating problems

Example of design pattern?

• Creational patterns: Builder, Singleton, Dependency Injection, etc

• Structural patterns: Facade, Adapter, etc

• Behavioural patterns: Command, Memento, State, Iterator, etc

• *Architectural patterns: MVC, MVP, MVVM, etc

System Architecture

MVVM
Architecture

HTTP

REST

GraphQL

Mobile App Back-end

MVC
ArchitectureExample: Get the profile of a given user

HTTP : http://www.mywebsite.com/getprofile.php? uid=1213

REST : GET http://www.mywebsite.com/profiles/1213

GraphQL: query{
User(uid: 1213){

fullName
role

}
}

Programming:
Node, PHP, Python,
Perl,
Deno

Database:

MySQL, MongoDB,
Firebase

Back-end Architecture

1. Client Request
Controller

• Handles client
requests: GET, POST,
etc

• Gets data from the
models and passes
data to the views

• Gets presentations
from the views and
passes to the client

Back-end

Model View Controller (MVC)

Model

• Handles data related logic

• Talks to the database, e.g
SELECT, INSERT, UPDATE, etc

View

• Handles data presentation
• Dynamic UI / pages
• Template engines

Front-end

4. Server Response

Back-end Architecture (2)

http://mysite.com/users/10
Controller

user = UserModel.getUser(10)

If (user is found) then
page = UserView.render (user)

Response.send(page)
End if

Back-end

Example: Show user profile

Model

SELECT * FROM users
WHERE id = 10

View

<h1>{{user.name} </h1>

Email: {{user.email}
Phone: {{user.phone}}

Front-end

Server Response

<h1> … </h1>

…

Back-end Architecture (3)

Controller
user = UserModel.getUser(10)

If (user is found) then
Response.send(user)

Else
Response.error(404)

End If

Back-end

Our architecture for REST API Server

Model

SELECT * FROM users
WHERE id = 10

Mobile App

R
o

u
te

r
Database

GET /users/10

router.get(‘/user/:id’)

Response

{
"id": 10,
"name" : "Abdullah Tajuddin",
"email" : "abdullaht@gmail.com"

}

backend

https://github.com/jumail-utm/backend_node_mysql

Frontend (Flutter App – Todo List)

https://github.com/jumail-utm/flutter_todo_rest

Project Source Code

https://github.com/jumail-utm/backend_node_mysql
https://github.com/jumail-utm/flutter_todo_rest

Setting Up for Local Development

• Install Xampp
https://www.apachefriends.org/download.html

• Install MySQL Client
phpMyAdmin

MySQL Workbench

https://www.mysql.com/products/workbench

MySQL Admin (Chrome Extension)
https://chrome.google.com/webstore/detail/chrome-mysql-admin/ndgnpnpakfcdjmpgmcaknimfgcldechn

• Install Node JS
https://nodejs.org/en/download

https://www.apachefriends.org/download.html
https://www.mysql.com/products/workbench
https://chrome.google.com/webstore/detail/chrome-mysql-admin/ndgnpnpakfcdjmpgmcaknimfgcldechn
https://nodejs.org/en/download

Creating Database

Create database from any MySQL Client tool

Use SQL script rather than using GUI

Sample script on my github repo

https://github.com/jumail-

utm/backend_node_mysql/blob/master/dev/mysql/setup_database.sql

https://github.com/jumail-utm/backend_node_mysql/blob/master/dev/mysql/setup_database.sql

Writing Code for REST API Service with Node JS

• Setup Project
• Project structure

• Install dependency packages

• Setup Database connection

• Define model classes

• Define route handlers

https://jumail-utm.github.io/backend_node_mysql/pages/node-mysql-rest-api

Command line and Code snippet:

https://jumail-utm.github.io/backend_node_mysql/pages/node-mysql-rest-api

Express JS Middleware

• Express JS is a routing and middleware web framework

• An Express application is a series of function calls (called middlewares)
that run between the time of the server gets the request and the time
it sends out the response

HTTP Request ModelExpress

M
id

d
le

w
ar

e

M
id

d
le

w
ar

e

M
id

d
le

w
ar

e

HTTP Response

Express JS Middleware (2)

Terminologies

Modelapp.get(‘/users/:id’)

Modelapp.post(‘/users’)HTTP Request

Modelapp.get(‘/’)

M
id

d
le

w
ar

e

M
id

d
le

w
ar

e

M
id

d
le

w
ar

e

HTTP Response

Router

HTTP
method Route

const app = express()

app.get('/', handleRootRoute)

app.post('/users', handleCreateUser)

app.get('/users/:id', (req, res, next) => {
// code are excluded for brevity

})

function handleRootRoute(req, res, next){
// code are excluded for brevity

}

function handleCreateUser(req, res, next){
// code are excluded for brevity

}

Example express app code

Router

Modelapp.get(‘/endpoint’)

Modelapp.post(‘/’)

Express JS Middleware (3)

HTTP
Request

HTTP
Response

Modelapp.use()

ex
p

re
ss

.js
o

n
()

M
id

d
le

w
ar

e

Model

M
id

d
le

w
ar

e

M
id

d
le

w
ar

e

app.get(‘/’)

M
id

d
le

w
ar

e

next() next()

How it works?

Express JS Middleware (4)

Each middleware function accepts three parameters

• req: Request data from the client

• res: Server response to the client

• next: function to execute the next middleware

const app = express()

app.post('/users', handleCreateUser)

app.get('/users/:id', (req, res, next) => {
// code are excluded for brevity

})

function handleCreateUser(req, res, next){
// code are excluded for brevity

}

Middleware Functions

Express JS Middleware (5)

• A middleware can pass data to
the next one by injecting the
data to req or res

• Not by passing parameter to
next()
So the following does not really work

function firstMiddleware(req, res, next){
next(10)

}

app.get(‘/anyroute’, firstMiddleware,
secondMiddleware,
lastMiddleware)

function firstMiddleware(req, res, next){
req.firstValue = 10
next()

}

function secondMiddleware(req, res, next){
req.secondValue = 20
next()

}

function lastMiddleware(req, res, next){
const a = req.firstValue
const b = req.secondValue
console.log(‘result = ‘, a + b)

}

Passing Data To Next Middleware Example

Express JS Middleware (6)

• Practical implementation of express
is by middleware chaining

• It promotes modularity

• Large tasks can be splitted into
smallers ones

• Each middleware can focus on its
specific task

Model

HTTP Request

app.post(‘/users/accounts’)

is
U

se
rL

o
gg

ed
In

ve
ri

fy
A

d
m

in
R

o
le

n
ew

A
cc

o
u

n
t

HTTP Response

Chaining Middleware

Example: Register a new account

Express JS Middleware (7)

app.post(‘/users/accounts’, isUserLoggedIn,
verifyAdminRole,
newAccount)

function isUserLoggedIn(req, res, next){
const user = req.user
if (!user) return res.sendStatus(401) // unauthorized
next()

}

function verifyAdminRole(req, res, next){
const user = req.user
if (user.role !== ADMIN_ROLE) return res.sendStatus(403) // Forbidden
next()

}

function newAccount(req, res, next){
const newAccountData = req.body

// Code for creating a new account goes here
}

Example

Deploy on Heroku for Production

• Sign up for an account on Heroku
https://signup.heroku.com

• Install the Heroku CLI tools
https://devcenter.heroku.com/articles/heroku-cli

• Create Heroku Apps
https://dashboard.heroku.com/apps

• Create ClearDB My SQL
https://jumail-utm.github.io/backend_node_mysql/pages/heroku-setup-mysql

• Deploy Node JS project to Heroku – Prepare, Deploy and Troubleshoot
https://jumail-utm.github.io/backend_node_mysql/pages/heroku-deploy-node

• Test the REST API Server

https://signup.heroku.com/
https://devcenter.heroku.com/articles/heroku-cli
https://dashboard.heroku.com/apps
https://jumail-utm.github.io/backend_node_mysql/pages/heroku-setup-mysql
https://jumail-utm.github.io/backend_node_mysql/pages/heroku-deploy-node

backend

https://github.com/jumail-utm/backend_node_mysql

Frontend (Flutter App – Todo List)

https://github.com/jumail-utm/flutter_todo_rest

Project Source Code

https://github.com/jumail-utm/backend_node_mysql
https://github.com/jumail-utm/flutter_todo_rest

Summary

• Setting up databases

•MVC pattern for REST API

•Writing REST API service with
Node JS and MySQL

•Deploy Node apps to Heroku

Jumail Bin Taliba
School of Computing, UTM

June 2020

Integrating with Backend

Backend Services
Part 2: REST Service on Firebase

Watch on YouTube

Set the playback speed 1.5X

See the timestamp in the description

Agenda

•Architecture Setups

• Introduction to Firebase

• Setting Up Local Firebase

•Developing REST Service

•Deploying to Firebase

Introduction

Architecture Setups

Each application has several types of code:

Task Example

UI or presentation Show screen, manage layout, etc

Presentation logic related Conditional UI, state management, etc

Authentication Verify who a user is

Authorization Verify what a user has access to

Database related CRUD operations

Local resource related Access to device’s camera, local files, sensors, etc

API access Geo location API

Question: Where should you put these code?

Architecture Setups (2)

Back-endFront-end

Database

SDK
User Interface

UI Logic Related

Authentication

Authorization

Database access

Example Setup 1.1: Thin Client
e.g. web-based apps, mobile apps
REST API service, Firebase apps, etc

Business Logics

Architecture Setups (2)

Back-endFront-end

Database

SDK
User Interface

UI Logic Related

Authentication

Authorization

Database access

Example Setup 1.2: Thin Client

Business Logics

Architecture Setups (3)

Back-endFront-end

DatabaseSD
K

User Interface

UI Logic Related

Business logics

Authentication

Authorization

Example Setup 2.1: Thick Client
e.g. desktop apps, Java apps,
.Net apps, Firebase apps,
mobile apps, etc

Architecture Setups (3)

Back-endFront-end

DatabaseSD
K

User Interface

UI Logic Related

Business logics

Authentication

Authorization

Example Setup 2.2: Thick Client

Architecture Setups (4)

Back-endFront-end

Firestore

Firebase Admin SDK
User Interface

UI Logic Related

Authentication

Authorization

Database access

Firebase Setup for REST API Service (Example 1)

Business Logics

REST

Storage

Node JS

Firebase
Used for data storage

Default Credential

Backend code and Firebase are at the same environment

Auth

Architecture Setups (4)

Back-endFront-end

Firestore

Fi
re

b
as

e
A

d
m

in

SD
K

User Interface

UI Logic Related

Firebase Setup for REST API Service (Example 2)

Business Logics

REST

Storage

A
cc

o
u

n
t

C
re

d
en

ti
al

Backend code and Firebase are at different environment

Auth

Architecture Setups (5)

Back-endFront-end

Firestore

Fi
re

b
as

e
SD

K

User Interface

UI Logic Related

Firebase Setup for Client App (Example 1)

Business Logics

Storage

e.g.
SPA web app,
Flutter app,
mobile app

Authentication

Firebase
Security Rules

To control access to firebase resources

One advantage:

Allow server push

Fi
re

b
as

e
C

o
n

fi
g

Architecture Setups (6)

Example of
Firebase Security

Rules

Architecture Setups (7)

Back-endFront-end

Firestore

Fi
re

b
as

e
SD

K

User Interface

UI Logic Related

Firebase Setup for Client App (Example 2)

Business Logics

Storage Authentication

Firebase Security Rules

Example use case:

Refactoring code

Business Logics

Cloud Functions
(Node JS)

Fi
re

b
as

e
C

o
n

fi
g

Firebase Admin SDK
Default Credential

Introduction to Firebase

• What is Firebase?
• A BaaS solution

• Backend made easy

• Firebase Services:
• Database: Firestore, Realtime (document-based NoSQL)

• Cloud Storage

• Authentication

• Authorization

• Web Hosting

• Cloud Functions

• Cloud Messaging

• Many more ….

What is NoSQL?

• “Not Only SQL”

• Non-Relational database

• No schema

• Allow unstructured data

• No normalization

• Does not guarantee data integrity and consistency

• Types of NoSQL databases:
• Document-based (e.g. Firebase’s Firestore and Realtime, MongoDB)

• Column-based (e.g. Apache Cassandra)

• Graph-based (e.g Neo4J)

Document 3: uid 211

{
"uid" : 211,
"name" : "Siti Aminah Rashid",
"email" : "saminahr@gmail.com"

}

Document 2: uid 53

{
"uid" : 53,
"name" : "Ali Bakar",
"email" : "ali2020@gmail.com"

}

SQL vs Document-based NoSQL

SQL Document-based NoSQL

uid name email

11 Abdullah
Razali

abdullah.r@gmail.com

53 Ali Bakar ali2020@gmail.com

211 Siti Aminah
Rashid

saminahr@gmail.com

Table Users

A database contains a list of tables
A table contains a list of records
A table may have relationships to other tables

A database contains a list of collections
A collection contains a list of documents

Document 1: uid 11

{
"uid" : 11,
"name" : "Abdullah Razali",
"email" : "abdullah.r@gmail.com"

}

Collection Users

Example query:

SELECT * FROM users

WHERE uid = 11
Example query (in Firebase):

db.collection('users').doc('11').get()

mailto:ali2020@gmail.com

What are Cloud Functions?

• Functions run on Google Cloud Platform, e.g. on Firebase

• Serverless: No server management is required

• Event-driven: a function executes when certain event occurs

Source Event Use case example

Firestore onCreate, on Update, onDelete, onWrite Send a push notification to users when a new
data created

Cloud Storage onChange [on Objects] Resize and convert format of an avatar

Authentication onCreate, onDelete Create a new document for newly registered
user

HTTP onRequest, onCall REST API call,
Callable functions – Refactoring some client-
side code to server-side code

… and many more ….

How to Write Cloud Functions?

• Install firebase-tools

• Create a firebase project with functions features added
$ firebase init functions

• Write the code in ./functions/index.js file for the following tasks:
• Import Firebase SDK

• Initialize the SDK with an authorization strategy

• Export functions to be listened by Firebase
Example of index.js is in the following slide

• Deploy the functions to Firebase
$ firebase deploy --only functions

How to Write Cloud Functions? (2)

./functions/index.js

How to Write Cloud Functions? (3)

Example 1: Triggers

No explicit function call
required: A trigger will
be called automatically
by Firebase when the
event occurs.

How to Write Cloud Functions? (4)

Example 2:

Callable Functions

A callable function can be called
directly from the client app.

An example use case, to refactor some
business logics code at client-side and
move it to server-side

How to Write Cloud Functions? (5)

To call to cloud functions
from Flutter, use the
CloudFunction package

Each cloud function call is
asynchronous

How to Write Cloud Functions? (6)

Example 3:

HTTP Requests

Functions are called from
HTTP-based clients, e.g.
web browser, REST client

Demo
Developing REST Service on Firebase

backend

https://github.com/jumail-utm/backend_firebase_rest

Frontend (Flutter App – Todo List)

https://github.com/jumail-utm/flutter_todo_rest

Command line and code snippet to code along:

https://jumail-utm.github.io/backend_firebase_rest

Demo - Project Source Code

https://github.com/jumail-utm/backend_firebase_rest
https://github.com/jumail-utm/flutter_todo_rest
https://jumail-utm.github.io/backend_firebase_rest

Back-end Architecture

Controller
user = UserModel.getUser(10)

If (user is found) then
Response.send(user)

Else
Response.error(404)

End If

Back-end

Adopt MVC architecture

Model

db.collection(‘users’).do
c(10).get()

Mobile App

R
o

u
te

r
Firestore

GET /users/10

router.get(‘/user/:id’)

Response

{
"id": 10,
"name" : "Abdullah Tajuddin",
"email" : "abdullaht@gmail.com"

}

Express JS

Firebase SDK

Express JS Middleware

Watch the previous lecture video to learn more about Express JS and Router

HTTP Request ModelExpress

M
id

d
le

w
ar

e

M
id

d
le

w
ar

e

M
id

d
le

w
ar

e

HTTP Response

Setting Up Local Firebase

Developing REST API

Project Structure

Deploying the Project

Summary

• Introduction to Firebase

• Set up Local Firebase

•Develop REST API on Firebase

•Deploy REST API to Firebase

