
Jumail Bin Taliba
School of Computing, UTM

May 2020

Integrating with Backend

HTTP and JSON
Part 1 - Lecture

Agenda

• Introduction to HTTP

•HTTP Request and Response

•Dart’s http package

• Introduction to JSON

•Data Conversion

• JSON Decoding and Encoding

•Conversion Examples

•Demo

Introduction to HTTP

• HTTP - HyperText Transfer Protocol

• Defines how data are transmitted between clients and servers over the world wide
web.

• Client send HTTP Request to the server

• Server reply with HTTP Response to the client

Web client Internet
Web Server

Request Response

HTTP Request

Request Line

Request Header

Empty Line

Request Body
(optional)

Request-Method URL HTTP-VersionHTTP Request
Structure

Request line:

Request-Method: GET, POST, PUT, DELETE, etc.

Header-Field1: value1

Header-Field2: value2

……

Header-FieldN: valueN

Request Header:

Request header fields allow the client to send
additional information about the request and
about the client itself.

HTTP Request (2)

Request-line

Request-header

Request-body

HTTP Request Example

HTTP Request (3)

• GET is used to request data from a specified resource.

• POST is used to request for the server to create a new resource.

• PUT is used to request for the server to replace / update a resource.

• HEAD is similar to GET, but returns only the response header.

• DELETE is used to request for the server to delete a resource.

• Other methods: PATCH, TRACE, OPTIONS, CONNECT

HTTP Request Methods

HTTP Response

Status Line

Response Header

Empty Line

Response Body
(optional)

HTTP-Version Status-Code Reason-PhraseHTTP Response
Structure

Status line:

Header-Field1: value1

Header-Field2: value2

……

Header-FieldN: valueN

Request Header:

The response-header fields allow the server to
send additional information about the
response, such as information about the
server itself

HTTP Response (2)

Status-line

Response-header

Response-body

HTTP Response Example

HTTP Response (3)

• 1XX: Information
• e.g. 100 Continue. The server has received the request headers, and the client should

proceed to send the request body

• 2XX: Successful
• 200 OK. The request is OK

• 201 OK. The request has been fulfilled, and a new resource is created

Response Status Code

HTTP Response (4)

• 3XX: Redirection
• e.g. 301 Moved Permanently. The requested page has moved to a new URL

• 4XX: Client Error
• e.g. 404 Not Found. The request was a legal request, but the server is refusing to respond

to it

• 5XX: Server Error
• e.g. 500 Internal Server Error. A generic error message, given when no more specific

message is suitable

Response Status Code

Dart’s http Package

• The http package provides services that allow a flutter app (as a client)
to communicate to a web server.

• To add this package to a flutter project:
• In pubspec.yaml file

• Import it in dart file:

https://pub.dev/documentation/http/latest/http/http-library.html

https://pub.dev/documentation/http/latest/http/http-library.html

Introduction to JSON

• JSON stands for JavaScript Object Notation

• It is meant for exchanging data between systems, e.g. client and server

• It is text, written with JavaScript object syntax.

• It is language independent (although it is based on JavaScript)

Data Conversion

Objects, Lists, Nested ObjectsParsed JSON (Map)String JSON

deserialize /
parse /
decode

Further
conversion
to objects

Serialize /
encode Object to Map

Client Application

Where does it come from?
• Backend response
• App assets
• Device Local file
• Client request to backend

Data Conversion (2)

• Serialization – convert structured data to string (String is a series of
characters).

• Parsing – split a string into its components.

• JSON data conversion in Dart can be done with the dart:convert
package

• Related methods from the package:
• jsonDecode() - for deserialization / decoding / parsing string json to map

• jsonEncode() – for serialization / encoding object to string json

JSON Decoding

Objects, Lists, Nested ObjectsParsed JSON (Map)String JSON

(1)
dart::convert
jsonDecode()

(2)
Model class’s
fromJson()

Client Application

JSON Decoding (2)

First conversion:

• Is done with jsonDecode() .

• Convert string JSON to map data structure.

• So that we can interpret the content of the JSON data.
• JSON string is just a series of characters. It has no meaning.

• Thus, we need to parse or split to its component. This is done by jsonDecode()
method.

JSON Decoding (3)

Second conversion:

• Is done with the fromJson() constructor from each model class.

• Convert the parsed JSON (i.e, a map) to strongly-typed data structure such as
objects.

• So that we can still use statically typed language features, such as type safety and
autocompletion.

• For example, with the parsed JSON (i.e. a map), the code below has an error (i.e., there is no data of ‘longName’),
however the error is only detected at runtime

print(parsedJson['longName']);

• However, if using object the error can be detected at compile-time.

print(object.longName);

JSON Encoding

Objects, Lists, Nested ObjectsJSON MapString JSON

(2)
dart:convert
jsonEncode()

(1)
Model class’s

toJson()

Client Application

JSON Encoding (2)

First conversion:

• Is done with the toJson() method from each model class.

• Convert structured data (such objects, list) to map.

Second conversion:

• Is done with jsonEncode() .

• Convert map to string JSON.

Conversion Example: Object

String JSON Model class: GroupMember

jsonEncode() automatically call to the
toJson() method of the member
object.

Conversion Example: Nested Object

Define a dedicated class for the nested object, e.g. class Contact

String JSON

Conversion Example: Nested Object (2)

Model class: Contact Model class: GroupMember

jsonEncode() will automatically call to
the toJson() method of the contact
object.

Conversion Example: List of Objects

• Simply iterate each JSON data and put them in a list,
List<GroupMember>

• Create an instance of GroupMember from the JSON data for each
iteration

String JSON

Conversion Example: List of Objects (2)

Approach 1: Using regular for-loop

jsonEncode() will automatically call to
the toJson() method for each object.

Conversion Example: List of Objects (3)

Approach 2: Using high-order method forEach()

Approach 3: Using high-order method map() - Recommended

Summary

•HTTP

•HTTP Request and Response

• JSON

•Decoding and Encoding

•Conversion – How to

Jumail Bin Taliba
School of Computing, UTM

May 2020

Integrating with Backend

HTTP and JSON
Part 2 - Demo

Watch on YouTube

Set the playback speed 1.5X

Use the timestamp in the description

Outline

•Adding Conversion Methods
to Model Classes

• Fetching Data from Internet

•Using FutureBuilder Widget

• Introduction to REST

• Fetching Data from API Server

Demo App
Continue from the previous project

(navigation_named_routes)

Internet

Clone the source code
git clone https://github.com/jumail-utm/http_json

Start from any codebase branch
git checkout codebase-branch

codebase-branch:
• initial-codebase

• fetch-from-internet-codebase

• use-futurebuilder-codebase

• fetch-from-api-server-codebase

Code snippet to code along
https://gist.github.com/jumail-utm/9bd2752eb8fed21878da18adb6848ad9

Prepare the Codebase

https://gist.github.com/jumail-utm/9bd2752eb8fed21878da18adb6848ad9

Application Data

Assessment Activity

Application Data (2)

Assessment Activity

Application Data (3)

Assessment Activity

Store all objects in a single
JSON

Task 1: Add Conversion Methods to the Model Classes

• Add fromJson()
method

• Add toJson() method

• Test JSON decoding
(deserialization) with hard-
coded parsed JSON data

• Test JSON encoding on the
debug console

Task 2: Fetch Data from Internet

• In this section, we assume the string JSON received by the client, has
already been pre-processed by the backend.

• For example all the lookup fields have been resolved to their details
data.

• To mimic this, we simply use pre-created JSON file and host it on a web
server.

Fetch Data from Internet (2)

An example of pre-processing, lookup field resolution

http://myserver.com/assessments?activityid=2

Client request:

Resolve memberId

http://myserver.com/assessments?activityid=2

Fetch Data from Internet (3)

Flutter App

Internet

Database Scripts

Backend

• In this section, we assume the lookup field resolution is done by the
backend side, rather than the client

Fetch Data from Internet (4)

• Host the JSON data online

http://www.mocky.io

Pre-created online data

http://www.mocky.io/v2/5ea539bd3000005900ce2e8f

• Step-by-step
• Using global data

• Using passing data approach

• Use the FutureBuilder widget to build the main screen

http://www.mocky.io/
http://www.mocky.io/v2/5ea539bd3000005900ce2e8f

Fetch Data from Internet (5)

Using Global Data

main()

fetchData()

runApp()

Global data
• evaluator
• assessments
• criteria
• scales

Internet

MaterialApp

SummaryScreen DetailScreen

Fetch Data from Internet (6)

Using Passing Data Approach

Internet

MaterialApp

SummaryScreen
DetailScreen

evaluator
assessments
criteria
scales

fetchData() DetailScreen
gets data from
SummaryScreen

Fetch Data from Internet (7)

A better approach
with Provider (Not
covered in this
demo)

Internet
MaterialApp

Screen 1 Screen 2

Provider

Data or
States

Task 3: Use FutureBuilder Widget

• Use the FutureBuilder widget to build the main screen
(SummaryScreen)

• This widget will get triggered to perform its build() method when it
receives a Future data.

• Two important properties to setup:
• future : the Future data that this widget is depending on. In our case, it

will be the result of the http.get()call.

• builder : what this widget need to build when a future data arrives.

Task 4: Fetch Data from API Server

Client-server communication:

HTTP
JSON
REST

API Server

JSON Server
NoSQL-like Database

Introduction to

REST
•What is REST?

•Why REST?

•REST Guidelines

• Learning REST by Examples

What is REST?

• REST stands for Representational State Transfer

• Architecture style for the communication between client and server
applications

• Works on top of a stateless, client-server protocol mainly HTTP

• Language agnostic

• Facilitate the CRUD operations - the communication part, between the
client and server

Why REST?

• Let’s revisit HTTP.
Example: To register a new user, you have many ways with HTTP
http://<server>/registerUser.php?name=Tajuddin&age=20

http://<server>/register.php?type=user&name=Tajuddin&age=20

• You can simply choose only one HTTP Request (e.g. POST) for all CRUD
operations – NOT a good practice, violates the HTTP guidelines

• REST lets us use HTTP in a more consistent way

REST Guidelines

• Accept and respond with JSON

• Use nouns (or objects) instead of verbs (or actions) in endpoint path
• The action has been indicated by the HTTP Request method

• GET is used to request data from a specified resource.

• POST is used to request for the server to create a new resource.

• PUT is used to request for the server to replace / update a resource.

• PATCH is similar to PUT, but only update specified attributes of a resource.

• HEAD is similar to GET, but returns only the response header.

• DELETE is used to request for the server to delete a resource.

• Other methods: TRACE, OPTIONS, CONNECT

HTTP Request Methods

REST Guidelines (2)

Thus, to register a new user:

• name the path as /users instead of /registerUser

• always use a POST method To update an existing user:

To retrieve a user (for a given id):

GET http://<server>/users/5 HTTP/1.1

To delete a user (for a given id):

DELETE http://<server>/users/5 HTTP/1.1

REST Guidelines (3)

Name collections with plural nouns

• To reflect with tables in the database. A table consists a list of entries

Examples:

Get all users:

GET http://<server>/users HTTP/1.1

Get the user whose id 5:

GET http://<server>/users/5 HTTP/1.1

Get the user whose name Tajuddin:

GET http://<server>/users?name=Tajuddin HTTP/1.1

REST Guidelines (4)

Append a nested resource as the name of the path that comes after the
parent resource.

Examples:

Get all the contact information for a given user:
e.g. contacts: phone, mobile, main email, second email, etc

GET http://<server>/users/5/contacts HTTP/1.1

REST Guidelines (5)

Allow filtering, sorting and pagination

Examples:

Filtering: Get the user whose a given name and age:

GET http://<server>/users?name=Tajuddin&age=20 HTTP/1.1

Sorting: Get all users sorted by age (youngest first) followed by names (in alphabetical order)
+ means ascending and – means descending order

GET http://<server>/users?sort=-age,+name HTTP/1.1

Pagination: Get users from page 2

GET http://<server>/users?page=2 HTTP/1.1

REST Guidelines (6)

Error handling – Return standard error codes

• 1XX: Information

• 2XX: Successful

• 3XX: Redirection

• 4XX: Client Error

• 5XX: Server Error

HTTP Response Status code

• 400 Bad Request – The client-side input fails validation.

• 401 Unauthorized – The user isn’t not authorized to access a
resource.

• 403 Forbidden – The user is authenticated, but it’s not
allowed to access a resource.

• 404 Not Found – A resource is not found.

• 500 Internal server error – A generic server error.

• 502 Bad Gateway – An invalid response from an upstream
server.

• 503 Service Unavailable –Something unexpected happened
on server side

Example:

REST Guidelines (7)

• Maintain good security practices
• Use SSL/TLS

• Cache data to improve performance
• Caching allows retrieving data faster

• Versioning the APIs
• To prevent breaking the clients should a new version is implemented

• To phase out old endpoints gradually instead of forcing everyone to the new API

• Common strategy, add version number as part of the endpoint path, e.g. /v1/, /v2/

REST Examples

• Prepare the codebase
git clone https://github.com/jumail-utm/http_json

git checkout fetch-from-api-server-codebase

• Setup fake API server
• Install node.js: https://nodejs.org/en/download

• Install JSON Server: https://github.com/typicode/json-server

• Create JSON database

• Run the server

json-server --host your-pc-IP-address db.json

Note: Run ipconfig on Command Prompt to check your PC’s IP address. Do not use localhost.

https://github.com/jumail-utm/http_json
https://nodejs.org/en/download
https://github.com/typicode/json-server

REST Examples (2)

• Alternatively, you can use this online JSON server. However, it will not
reflect data update permanently.

https://my-json-server.typicode.com/jumail-utm/http_json

• Install VSCode extension REST Client to test the API server.
• Alternative to using REST client, you can use Postman.

https://www.postman.com/downloads/

• Open the file rest_client/learning_rest_examples.http into VS Code.

https://my-json-server.typicode.com/jumail-utm/http_json
https://www.postman.com/downloads/

• Supports multiple assessment activities, such as
• Activity 1: Group Project Team Working Assessment

• Activity 2: Pair Programming Exercise Assessment

• Each assessment activity has its own assessment criteria and scales

• Use a NoSQL database.
• A database consists of a list of collections (like tables in SQL). Our collections

are activities, assessments, forms, and users

• Each collection contains a list of documents (like rows or records in SQL)

Application Data (Upgraded Version)

Application Data (2)

Example 1 Example 2

Application Data (3)

Database Design

activities:
• id
• title
• evaluatorId
• formId

forms:
• id
• scales
• criteria

users:
• id
• shortName
• fullName

assessments:
• id
• activityId
• memberId
• points

JSON Database
https://my-json-server.typicode.com/jumail-utm/http_json

https://my-json-server.typicode.com/jumail-utm/http_json

Application Data (4)

• Prepare the codebase
git clone https://github.com/jumail-utm/http_json

git checkout fetch-from-api-server-codebase

• Setup fake API server
• Install node.js: https://nodejs.org/en/download

• Install JSON Server: https://github.com/typicode/json-server

• Create JSON database

• Run the server

json-server --host your-pc-IP-address db.json

Note: Run ipconfig on Command Prompt to check your PC’s IP address. Do not use localhost.

Testing the Database on Local Server

https://github.com/jumail-utm/http_json
https://nodejs.org/en/download
https://github.com/typicode/json-server

Application Data (5)

• Alternatively, you can use this online JSON server. However, it will not
reflect data update permanently.

https://my-json-server.typicode.com/jumail-utm/http_json

• Install VSCode extension REST Client to test the API server.
• Alternative to using REST client, you can use Postman.

https://www.postman.com/downloads/

• Open the file rest_client/test_database.http into VS Code.

Testing the Database on Local Server

https://my-json-server.typicode.com/jumail-utm/pseudo-api/posts/1
https://www.postman.com/downloads/

• Update model classes to reflect to the
changes of upgraded database

• Add DataService class to handle REST
requests for database manipulation

• Update only SummaryScreen to use
the DataService

Task 4: Fetch Data from API Server

Project File Structure

Summary

• Fetch data from internet

•Use FutureBuilder widget

•Data access with REST

• Fetch Data from API Server

• Structure the project code:
screens, models, and services

