Integrating with Backend

HTTP and JSON

Part 1 - Lecture

Jumail Bin Taliba

School of Computing, UTM
May 2020

* Introduction to HTTP

* HTTP Request and Response
* Dart’s http package

* Introduction to JSON

* Data Conversion

* JSON Decoding and Encoding
* Conversion Examples

* Demo

Introduction to HTTP

@) >

Web client Internet Web Server

e HTTP - HyperText Transfer Protocol

 Defines how data are transmitted between clients and servers over the world wide
web.

* Client send HTTP Request to the server
e Server reply with HTTP Response to the client

HTTP Request

Request line:

HTTP Request Request-Method URL HTTP-Version

Structure
Request-Method: GET, POST, PUT, DELETE, etc.

Request Line
Request Header Request Header:

Header-Fieldl: valuel

Empty Line
Request Body Header-Field2: value2

(optional)

Header-FieldN: valueN

Request header fields allow the client to send
additional information about the request and
about the client itself.

HTTP Request (2)

HTTP Request Example

POST /greeting HTTP/1.1 Request-line

User-Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)

Host: gmm-student.fc.utm.my:8000

Accept-Language: en-us Request-header

Accept-Encoding: gzip, deflate
Content-length: 14

Content-Type: application/x-www-form-urlencoded

Connection: Keep-Alive

myname=Mr+Node Request-body

HTTP Request (3)

HTTP Request Methods

* GET is used to request data from a specified resource.

* POST is used to request for the server to create a new resource.

* PUT is used to request for the server to replace / update a resource.
 HEAD is similar to GET, but returns only the response header.

* DELETE is used to request for the server to delete a resource.

* Other methods: PATCH, TRACE, OPTIONS, CONNECT

HTTP Response

Status line:

HTTP Response HTTP-Version Status-Code Reason-Phrase
Structure

Status Line

Response Header Request Header:

Header-Fieldl: valuel

Empty Line
Response Body Header-Field2: value2

(optional)

Header-FieldN: valueN

The response-header fields allow the server to
send additional information about the
response, such as information about the
server itself

HTTP Response (2)

HTTP Response Example

HTTP/1.1 200 OK m

Date: Mon, 27 Jul 2009 12:28:53 GMT

) Response-header
Server: Apache/2.2.14 (Win32)

Last-Modified: Wed, 22 Jul 2009 19:15:56 GMT
Content-Length: 88

Content-Type: text/html

Connection: Closed

<html>

<body>

<h1>Hello, World!</hl>
</body>

</html>

HTTP Response (3)

Response Status Code

e 1XX: Information

* e.g. 100 Continue. The server has received the request headers, and the client should
proceed to send the request body

e 2XX: Successful
* 200 OK. The request is OK

* 201 OK. The request has been fulfilled, and a new resource is created

HTTP Response (4)

Response Status Code

e 3XX: Redirection
e e.g. 301 Moved Permanently. The requested page has moved to a new URL

e 4XX: Client Error

* e.g. 404 Not Found. The request was a legal request, but the server is refusing to respond
to it

e 5XX: Server Error

e e.g. 500 Internal Server Error. A generic error message, given when no more specific
message is suitable

Dart’s http Package

* The hitp package provides services that allow a flutter app (as a client)
to communicate to a web server.

* To add this package to a flutter project:
* In pubspec.yaml file

dependenciles:
http: <latest_version>

* Importitin dart file:

import 'package:http/http.dart’ as http;

https://pub.dev/documentation/http/latest/http/http-library.html

https://pub.dev/documentation/http/latest/http/http-library.html

Introduction to JSON

* JSON stands for JavaScript Object Notation

* |t is meant for exchanging data between systems, e.g. client and server
* It is text, written with JavaScript object syntax.

* It is language independent (although it is based on JavaScript)

Data Conversion

Client Application

String JSON Parsed JSON (Map) Objects, Lists, Nested Objects
i
o £ e T ornaat®: “Abdullahe, p—
u a 3 u ame @ u a T "fullName”: "Abdullah Tajuddin” + shortName

Tajuddin" }, *“assessments": [{ sleserilibe Missessments”: [(Further < llltums . ot
"member": { "shortName": "Abdullah", parse / e Name™s "Abdullan®, conversion iR
"fullName": "Abdullah Tajuddin" }, decode "fullName": "Abdullah Tajuddin” . ; member T) T
"points": [4, 2J 3_, 2, 4] }_, { . e }, { : '}'[:.\oinCS": (4, 2, 3, 2, 4] to ObJeCtS B point 1 to point 5
e b {0 1, "scales": [{ e
"title": "Excellent", "value": 4 1}, Loy criteria
SFE T RTTE TR (O T F . F
"criteria": [{ "title": "Interaction”, . e hrcetenes
"description": "Degree of ..." }, { ... Serialize / | ek Object to Map [erterons: ;
oo v {3 { . encode (o i A [[see
] } { i: * description = value

{een }

1,
) "criteriﬁ":l [{“ . .

Where does it come from? il Imteractlon’s i

P
* Backend response (o
* App assets Lol

{ }

* Device Local file)
* Client request to backend

Data Conversion (2)

e Serialization — convert structured data to string (String is a series of
characters).

* Parsing — split a string into its components.

* JSON data conversion in Dart can be done with the dart:convert
package

e Related methods from the package:
* jsonDecode() - for deserialization / decoding / parsing string json to map
* jsonEncode() — for serialization / encoding object to string json

JSON Decoding

Client Application

String JSON

"shortName":

"fullName": "Abdullah

Tajuddin" }, ™"assessments": [{

"member": { "shortName": "Abdullah", (1)
"fullName": "Abdullah Tajuddin" 1}, dart::convert
"points": [4, 2, 3, 2, 4] }, { ...}, A jsonDecodeO
R T S S "scales": [{

"title": "Excellent", "value": 4 3},

RN P GRS PR SRR PR SR S P

"criteria”: [{ "title": "Interaction”,

"description": "Degree of ..." }, {

o 4o Lo {0 o

11

{ "evaluator": {
"Abdullah",

{

Parsed JSON (Map)

"avaluator™: {

e

shortName": "Abdullah",
fullName": "Abdullah Tajuddin”

"assessments": [{

1

}

{ ..
{ ...
{

"member": |
"shortName": "Abdullah”,
"fullName": "Abdullah Tajuddin®
Fe
"points*: (4, 2, 3, 2, 4]
i
< b
e
-1

"scales": [{

1,

}

{ ..
[vee }
{

{

"title": "Excellent",
"value™: 4

< b
eee by
-}

"criteria™: [{

"title": "Interaction",
"description": "Degree of ...["

]

1

[
[T
{vee by
{ vee by
[

Objects, Lists, Nested Objects

assessments

evaluator:
* shortName
+ fullName

* shortName
+ fullName

(2) : . Iﬂ‘enﬂ{;er E
Model class’s e point 1o points

fromJson()

criteria

ﬁ

criterion 3:

criterion 4:

criterion 5:
itle ti
* description = value

JSON Decoding (2)

First conversion:

* |s done with jsonDecode() .
* Convert string JSON to map data structure.

* So that we can interpret the content of the JSON data.

* JSON string is just a series of characters. It has no meaning.

e Thus, we need to parse or split to its component. This is done by jsonDecode()
method.

JSON Decoding (3)

Second conversion:

* |s done with the from/son() constructor from each model class.

e Convert the parsed JSON (i.e, a map) to strongly-typed data structure such as
objects.

* So that we can still use statically typed language features, such as type safety and

autocompletion.

* For example, with the parsed JSON (i.e. a map), the code below has an error (i.e., there is no data of ‘longName’),
however the error is only detected at runtime

print (parsedJson['longName']) ;

* However, if using object the error can be detected at compile-time.

print (object.longName) ;

JSON Encoding

Client Application

String JSON

"shortName":

"fullName": "Abdullah

Tajuddin" }, ™"assessments": [{

"member": { "shortName": "Abdullah",

"fullName": "Abdullah Tajuddin" 1},

"points": [4, 2, 3, 2, 4] }, { ...}, A

R T S S "scales": [{ (2)

"title": "Excellent", "value": 4 3}, dart:convert
. e }, { .o }_, { R }J { v }]J jsonEncode()

"criteria”: [{ "title": "Interaction”,
"description": "Degree of ..." }, {

{ "evaluator": {
"Abdullah",

oo (o o Ao
11}

{

JSON Map

"avaluator™: {
"shortName": "Abdullah",
“fullName™: "Abdullah Tajuddin”

e

"assessments": [{
"member": |

:

1

"scales":

1,

}

{ ..
{ ...
{

}

{ ..

{ eee 1y
[eee by
{ .1

}

< by
e
-]

"shortName": "Abdullah”,
"fullName": "Abdullah Tajuddin"

"pointa": [4, 2, 3, 2, 4]

[t

"title": "Excellent",
"value™: 4

- b

"criteria”:
"title": "Interaction",
"description": "Degree of ...["

]

}

{ ..
{ ...
{

{

{

- b
e
o b

e by
.

[

Objects, Lists, Nested Objects

assessments

= * shortName
assessment4: + fullName

* member

« points
point 1 to point 5

evaluator:
* shortName
+ fullName

(1)

Model class’s

criteria

ﬁ

tolJson()

criterion 3:

criterion 4:

criterion 5:
e title
* description = value

JSON Encoding (2)

First conversion:
* |Is done with the toJson() method from each model class.
e Convert structured data (such objects, list) to map.

Second conversion:
* |Is done with jsonEncode() .
* Convert map to string JSON.

Conversion Example: Object

String JSON Model class: GroupMember

GroupMember {
String shortName;
{ String fullName;

"shortName" : "Abdullah",
"fullName" "Abdullah Tajuddin®

GroupMember ({ -shortName, .fullName});

dynamic> json)
ortName'], fullName: json['fullName']);

'fullName': fullName};

1ic> parsedJson = jsonDecode(stringlson);

jsonEncode() automatically call to the
toJson() method of the member
object.

Conversion Example: Nested Object

String JSON
{
"shortName" : "Abdullah",
"fullName" : "Abdullah Tajuddin®™,
"contact"® H I
"mobile"™ : "+60134701234%,

"email™ : "abullah.tajuddinBgmail.com"
]

Define a dedicated class for the nested object, e.g. class Contact

‘/’—1

Model class: Contact Model class: GroupMember

class Contact { GroupMember({this.shortName, this.fullName, this.contact});
String mobile;

S Ee GroupMember.fromJson(Map<String, dynamic> json)

: this(
shortName: json['shortName'],
fullName: json['fullName'],
contact: Contact.fromJson json[contact’

Contact({this.mobile, this.email});

Contact.fromlson(Map<String, dynamic> json)

: this(mobile: json['mobile'], email: json['email']);

Map<String, dynamic> toJson() => {'mobile’: mobile, 'email': email};

Map<String, dynamic> tolson() => {
‘shortName': shortName,

‘fullName': fullName,

jsonEncode() will automatically call to contact’: contact,

the toJson() method of the contact b
object.

Conversion Example: List of Objects

String JSON
[
{
"shortName" : "Abdullah®,
"fullName"™ : "Abdullah Tajuddin"®

"shortName™: "Aisyah",
“"fullName": "Siti Nur Aisyah Binti Ahmad Kamal"},

"shortName": "Jailani®™,
"fullName": "Ahmad Jailani Bin Saad"

e Simply iterate each JSON data and put them in a list,
Li1st<GroupMember>

* Create an instance of GroupMember from the JSON data for each
iteration

Conversion Example: List of Objects (2)

Approach 1: Using regular for-loop
list = <GroupMember>|];
for (1 = 0; 1 < parsedlson.length; i++) {
list.add(GroupMember.fromJson parsedJson[i]);

1
J

print(list[@].fullName);

json = jsonEncode(list);

print(json);

jsonEncode() will automatically call to
the toJson() method for each object.

Conversion Example: List of Objects (3)

Approach 2: Using high-order method forEach()

List = <GroupMember)[];
parsedJson.forEach(jsonItem =) list.add GroupMember.fromJson(jsonItem));

Approach 3: Using high-order method map() - Recommended

list = parsedlson.map((jsonItem => GroupMember.fromlson jsonItem).toList();

*HTTP

* HTTP Request and Response
* JSON

* Decoding and Encoding

* Conversion — How to

Integrating with Backend

HTTP and JSON

Part 2 - Demo

Jumail Bin Taliba

School of Computing, UTM
May 2020

Watch on
Set the playback speed 1.5X

Use the timestamp in the description

* Adding Conversion Methods
to Model Classes

* Fetching Data from Internet

* Using FutureBuilder Widget

* Introduction to REST

e Fetching Data from API Server

Internet

Demo App

Continue from the previous project
(navigation_named_routes)

Prepare the Codebase

Clone the source code
git clone https://github.com/jumail-utm/http json

Start from any codebase branch
git checkout codebase-branch

codebase-branch:

* initial-codebase

* fetch-from-internet-codebase

* use-futurebuilder-codebase

e fetch-from-api-server-codebase

Code snippet to code along
https://gist.github.com/jumail-utm/9bd2752eb8fed21878dal18adb6848ad9

https://gist.github.com/jumail-utm/9bd2752eb8fed21878da18adb6848ad9

Application Data

Assessment Activity

evaluator: assessments

Peer and sSelt Assessement by
* shortN assessment 1: - -
» e assessmentz‘; | Abdullah Tajuddin

fullName

assessment 3:

: ¢ shortName
assessment 4: e fullName Abdullah

* member Abdullah Tajuddin
* points

point 1 to point 5

Aisyah

Siti Nur Aisyah Binti Ahmad Kamal

criteria
scales

criterion 1:

criterion 2:

criterion 3: Jailani

criterion 4. scale 3: Ahmad Jallani Bin Saad

*| criterion 5: * | scale 4:

+ title title
» description * value

Amalina

Amalina Dasuki

Application Data (2)

Assessment Activity

assessments A Vil RE
evaluator:

e shortName assessment1: | Abdullah

e fullName assessment 2: ‘
assessment 3:

+ shortName Interaction

assessment 4: » fullName Degree of interaction with other Excellent
* member members

* points

point 1 to point 5

Commitment
Degree of participation to the

project execution

criteria
scales

criterion 1: Effort
criterion 2: The amount of effort and work Good
ctiterion 3: contributed to the project outcome

criterion 4: scale 3:

*| criterion 5 * | scale 4: Adaptability

+ title . title : i : .
. case of agapting to the group
» description * value f))

Personality
Degree of compromisation between| Excellent «
group members

Application Data (3)

"eyaluator™: {

ASSGSS me nt ACt'V'ty "shortName": "Abdullah"™,
"fullName": "Abdullah Tajuddin”

. assessments = L |
evaluator: - “: "Abdullah"”,

* shortName assessment 1: ‘ : "fullHame": "Rbdullah Tajuddin”
. L
e fullName assessment 2: ‘ "points":

assessment 3:
* shortName

¢ fullName

[] P
assessment 4: T
[]

* member

[{

Store all objects in a single e titier: Excellent”,

"valua": 4

criteria JSON { T

b

criterion 1: A
sildic U. . A

criterion 2:]
r

criterion 3:

"ecriteria™: [{
"title": "Interaction",
"description": "Degree of ...

criterion 4: scale 3:

. N N
criterion 5: scale 4:

* title * title eee 1,

* description * value wee }a
T r

e

Task 1: Add Conversion Methods to the Model Classes

e Add fromJson ()
method

* Add toJson () method

e Test JSON decoding
(deserialization) with hard-
coded parsed JSON data

Test JSON encoding on the
debug console

String JSON

{ ‘"evaluator": { "shortName":
"Abdullah", "fullName": "Abdullah
Tajuddin® }, ‘“assessments": [{
"member”: { "shortName": "Abdullah",
“fullName": "Abdullah Tajuddin" },
"points": [4, 2, 3, 2, 4] }, { ...},
co Mg U coo § s "scales": [{
"title": "Excellent", “"value": 4 3},
b {..) {...) {...} 1,

“criteria”: [{ "title": "Interaction”,
"description": "Degree of ..." }, { ...

}

s e b L b Ll A
1)

{

}

{

Parsed JSON (Map)

“criteria”: [{
“"title": "Interaction",

ah
lah Tajuddin® .

Client Application

Further
conversion
to objects

Objects, Lists, Nested Objects

tion

Task 2: Fetch Data from Internet

* In this section, we assume the string JSON received by the client, has
already been pre-processed by the backend.

* For example all the lookup fields have been resolved to their details
data.

* To mimic this, we simply use pre-created JSON file and host it on a web
server.

Fetch Data from Internet (2)

An example of pre-processing, lookup field resolution "id": 5,
"activityId": 2,
Client request: "member”: {
"id": 1,
"shortName": "Abdullah",
"fullName": "Abdullah Tajuddin™

},

"id": 5, "points":

"activityId": 2, 1,
"memberId”: 1, 1,
"points": [1

Resolve memberld

"id": 6,
"activityId": 2,
"member": {
"id": s, "id": 4,
"activityId": 2, "shortName": "Amalina",
"memberId”: 4, "fullName": "Amalina Dasuki"
"points": [},
2, "points":
2,
2,
2

http://myserver.com/assessments?activityid=2

Fetch Data from Internet (3)

* In this section, we assume the lookup field resolution is done by the
backend side, rather than the client

String JSON
{ "evaluator": { "shortName":
"Abdullah", "fullName": "Abdullah
- Tajuddin" }, "assessments": [{
"member”: { "“shortName": "Abdullah",
"fullName": "Abdullah Tajuddin" 1},

. "points": [4, 2, 3, 2, 4] }, { ...}, A
Database ~|| Scripts P LY D P et <:>
~ "title": "Excellent", "value » 1

1 i } { 3 I
R R ST N o 1
"criteria": [{ "title": "Intera
"description”: "Degree of ..." }, {

Internet

Flutter App

Fetch Data from Internet (4)

* Host the JSON data online
http://www.mocky.io

Pre-created online data

http://www.mocky.io/v2/5ea539bd3000005900ce2e8f

 Step-by-step
* Using global data
e Using passing data approach
* Use the FutureBuilder widget to build the main screen

http://www.mocky.io/
http://www.mocky.io/v2/5ea539bd3000005900ce2e8f

Fetch Data from Internet (5)

Using Global Data

Global data

e evaluator

e assessments .

. criteria \\ MaterialApp
e scales

e TN
:> fetchData () -
\< runApp () SummaryScreen DetailScreen
Internet

Fetch Data from Internet (6)

Using Passing Data Approach

MaterialApp

evaluator
assessments
criteria

:> SummaryScreen scales
= DetailScreen
fetchData ()

DetailScreen
gets data from
SummaryScreen

RN

Internet

Fetch Data from Internet (7)

A better approach Data or
with Provider (Not . States

: : Provider
covered in this

\

demo)

Internet
Materia!App

Screen 1

Task 3: Use FutureBuilder Widget

e Use the FutureBuilder widget to build the main screen
(SummaryScreen)

* This widget will get triggered to perform its build () method when it
receives a Future data.

* Two important properties to setup:
e future : the Future data that this widget is depending on. In our case, it
will be the result of the http.get () call.
* builder : whatthis widget need to build when a future data arrives.

Task 4: Fetch Data from API Server

<)

Client-server communication:

APl Server HTTP

JSON Server JSON
NoSQL-like Database REST

Introduction to * What is REST?
e Why REST?

R EST * REST Guidelines

e Learning REST by Examples

e REST stands for Representational State Transfer

* Architecture style for the communication between client and server
applications

* Works on top of a stateless, client-server protocol mainly HTTP
* Language agnostic

* Facilitate the CRUD operations - the communication part, between the
client and server

e Let’s revisit HTTP.

Example: To register a new user, you have many ways with HTTP
http://<server>/registerUser.php?name=Tajuddin&age=20
http://<server>/register.php?type=user&name=Tajuddin&age=20

POST http://<server>/registerUser HTTF/1.1 GET http://<server>/register HTTP/1l.1
Content-Type: application/j=son Content-Type: application/json
{ {
"name": "Tajuddin®, "type": "user”,
"age™ : 20 "name": "Tajuddin",
} "age" : 20
}

* You can simply choose only one HTTP Request (e.g. POST) for all CRUD
operations — NOT a good practice, violates the HTTP guidelines

* REST lets us use HTTP in a more consistent way

REST Guidelines

* Accept and respond with JSON

e Use nouns (or objects) instead of verbs (or actions) in endpoint path
* The action has been indicated by the HTTP Request method

HTTP Request Methods

* GET is used to request data from a specified resource.

POST is used to request for the server to create a new resource.

PUT is used to request for the server to replace / update a resource.

PATCH is similar to PUT, but only update specified attributes of a resource.

HEAD is similar to GET, but returns only the response header.

DELETE is used to request for the server to delete a resource.
Other methods: TRACE, OPTIONS, CONNECT

REST Guidelines (2)

Thus, to register a new user:
* name the path as /usersinstead of /registerUser

e always use a POST method

POST http://<server>/users HTTP/l.1
Content-Type: application/json

{
"name": "Tajuddin",
"age" : 20

}

To update an existing user:

PUT http://<server>/users HTTF/1l.1
Content-Type: application/json

{
"name": "Ahmad Tajuddin®,
"age" : 21

}

To retrieve a user (for a given id):

GET http://<server>/users/5 HTTP/1.1

To delete a user (for a given id):

DELETE http://<server>/users/5 HTTP/1.1

REST Guidelines (3)

Name collections with plural nouns

* To reflect with tables in the database. A table consists a list of entries

Examples:

Get all users:

GET http://<server>/users HTTP/1.1

Get the user whose id 5:

GET http://<server>/users/5 HTTP/1.1

Get the user whose name Tajuddin:

GET http://<server>/users?name=Tajuddin HTTP/1.1

REST Guidelines (4)

Append a nested resource as the name of the path that comes after the
parent resource.

Examples:

Get all the contact information for a given user:
e.g. contacts: phone, mobile, main email, second email, etc

GET http://<server>/users/5/contacts HTTP/1.1

REST Guidelines (5)

Allow filtering, sorting and pagination

Examples:

Filtering: Get the user whose a given name and age:

GET http://<server>/users?name=Tajuddin&age=20 HTTP/1.1

Sorting: Get all users sorted by age (youngest first) followed by names (in alphabetical order)
+ means ascending and — means descending order

GET http://<server>/users?sort=-age, +tname HTTP/1.1

Pagination: Get users from page 2

GET http://<server>/users?page=2 HTTP/1.1

REST Guidelines (6)

Error handling — Return standard error codes

HTTP Response Status code

Example:

o 1XX:
o 2XX:
o 3XX:
* 4XX:
5XX:

Information
Successful

Redirection
Client Error

Server Error

400 Bad Request — The client-side input fails validation.

401 Unauthorized — The user isn’t not authorized to access a
resource.

403 Forbidden — The user is authenticated, but it’s not
allowed to access a resource.

404 Not Found — A resource is not found.
500 Internal server error — A generic server error.

502 Bad Gateway — An invalid response from an upstream
server.

503 Service Unavailable —=Something unexpected happened
on server side

REST Guidelines (7)

* Maintain good security practices
e Use SSL/TLS

e Cache data to improve performance
e Caching allows retrieving data faster

* \ersioning the APIs

* To prevent breaking the clients should a new version is implemented
* To phase out old endpoints gradually instead of forcing everyone to the new API
 Common strategy, add version number as part of the endpoint path, e.g. /v1/, /v2/

REST Examples

* Prepare the codebase
git clone https://github.com/jumail-utm/http json

git checkout fetch-from-api-server-codebase

* Setup fake API server

Install node.js: https://nodejs.org/en/download

Install JSON Server: https://github.com/typicode/json-server
Create JSON database

Run the server

json-server —--host your-pc-IP-address db.json

Note: Run ipconfigon Command Prompt to check your PC’s IP address. Do not use localhost.

https://github.com/jumail-utm/http_json
https://nodejs.org/en/download
https://github.com/typicode/json-server

REST Examples (2)

* Alternatively, you can use this online JSON server. However, it will not
reflect data update permanently.

https://my-json-server.typicode.com/jumail-utm/http json

e Install VSCode extension REST Client to test the API server.

 Alternative to using REST client, you can use Postman.
https://www.postman.com/downloads/

* Open the file rest_client/learning rest _examples.http into VS Code.

https://my-json-server.typicode.com/jumail-utm/http_json
https://www.postman.com/downloads/

Application Data (Upgraded Version)

* Supports multiple assessment activities, such as
* Activity 1: Group Project Team Working Assessment
* Activity 2: Pair Programming Exercise Assessment

e Each assessment activity has its own assessment criteria and scales

e Use a NoSQL database.

e A database consists of a list of collections (like tables in SQL). Our collections
are activities, assessments, forms, and users

* Each collection contains a list of documents (like rows or records in SQL)

Example 1

Group project team working

Abdullah Tajuddin

Abdullah
Andullab Tajuddin

Aisyah
Sitl Mur Alsyah Bintl ahmad Kamal

Jailani
Ahrad Jailani Bin Saad

Amalina
Armalina Dasukl

Application Data (2)

NETEGT

Interaction .
Degrae of interaction with other Fair S
members

Commitment
Degree of participation to the Poar -
project exaecutlan

Effart
The amount of effort and work Good -
contributed to the project outcome

Adaptgblhw. Fair .
Ease of adapting to the group

Personality

Degree of compromisation between Poor -

Qroup meamoers

Example 2

Exercise Pair Programming

Abdullah Tajuddin Abdullah

Navigator
Abdullah How good at playing the navigalor Good v
Abdullah Tajuddin role

Driver
How good at playing the driver role

Poor v

Amalina
Amalina Dasuki

Personality
Degree of compromisation to the Notatall ~
partner

Application Data (3)

Database Design assessments:
id
activityld
memberld
points
activities: one-to-many
e id
e title
e evaluatorld
e formld

id
shortName
fullName

JSON Database id

https://my-json-server.typicode.com/jumail-utm/http _json scales
criteria

https://my-json-server.typicode.com/jumail-utm/http_json

Application Data (4)

Testing the Database on Local Server

* Prepare the codebase
git clone https://github.com/jumail-utm/http json

git checkout fetch-from—-api-server-codebase

* Setup fake API server
* Install node.js: https://nodejs.org/en/download
* Install JSON Server: https://github.com/typicode/json-server
* Create JSON database
* Run the server
json—-server --host your-pc-IP-address db.json

Note: Run ipconfig on Command Prompt to check your PC’s IP address. Do not use localhost.

https://github.com/jumail-utm/http_json
https://nodejs.org/en/download
https://github.com/typicode/json-server

Application Data (5)

Testing the Database on Local Server

 Alternatively, you can use this online JSON server. However, it will not
reflect data update permanently.

https://my-json-server.typicode.com/jumail-utm/http json

e Install VSCode extension REST Client to test the API server.

* Alternative to using REST client, you can use Postman.
https://www.postman.com/downloads/

* Open the file rest_client/test database.http into VS Code.

https://my-json-server.typicode.com/jumail-utm/pseudo-api/posts/1
https://www.postman.com/downloads/

Task 4: Fetch Data from API Server

* Update model classes to reflect to the
changes of upgraded database

Project File Structure

[http Json]
-I-———[lih]
 Add DataService class to handle REST | |

requests for database manipulation

———main.dart
———router.dart
-==constants.dart

4+ ==——assessment.dart
+ ——form.dart
4+ ——-—activity.dart

* Update only SummaryScreen to use
the DataService

+

+

.+

|

+ ———[models]
|

|

|

I

+ —-—-—[screens]

| + —--—-summary.dart
| + ==--detaila.dart
|

+ ———[mervices]

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I + ===data service.dart

e Fetch data from internet

e Use FutureBuilder widget

e Data access with REST

e Fetch Data from API Server

e Structure the project code:
screens, models, and services

