
Jumail Bin Taliba
School of Computing, UTM

April 2020

Navigation and Routing

Basic Navigations
Part 1 - Introduction

Agenda
• Introduction to Navigation and Routes

• Navigating to another screen

• Navigating back to the previous screen

• Passing data between screens

Introduction
Navigation:

• Move between screens

Routes
• Screens or Pages

Navigations in Flutter are handled in

Stack Push
Show screens

Navigations in Flutter are handled in

Stack Pop
Close screens

Last In First Out (LIFO)

Demo App
Peer and Self Assessment

About the app

Evaluator

Evaluated
Members

AssessmentGroup member Point

Member being evaluated

Criteria

Scale

Value Scale description

4 Excellent

3 Good

2 Fair

1 Poor

0 Not at all

About the app

About the app
Overall Performance
Example Calculation

Criterion Scale Grade Scale Point

Interaction Excellent 4

Commitment Fair 2

Effort Good 3

Adaptability Fair 2

Personality Excellent 4

Total 15

Percentage (15 / 20) x 100 =

75%

Summary (main) screen Details screen

Code
https://github.com/jumail-utm/navigation_simple

Attendance

SINGLE ANSWER

Program’s file structure

Remaining parts of this lesson
will be available soon ….

Jumail Bin Taliba
School of Computing, UTM

April 2020

Navigation and Routing

Basic Navigations
Part 2 - Demo

Getting started with part 2

Program’s file structure

Task 1

Create the screen skeletons
AppBar > title

Listview.separated

ListTile
ListTile > title
and subtitle

CircleAvatar

DropdownButton

Task 2

Define model classes and mock data

class

GroupMember

class

Criterion
class

Scale
class

Assessment

list

mockData
list

criteria

Task 3

Build the screens with dynamic content

mockData
(mock_data.dart)

criteria
scales

(form.dart)

Task 4

Navigate and pass data to the second screen

Task 5

Return from the second screen with result

Task 6

Figure out the problem with the “Cancel” operation

mockData
(mock_data.dart)

passing object
(i.e. by reference)

Task 6

Solution to the “Cancel” operation problem

Pass a COPY

original
assessment

object

the copy of
the object

Return the
edited object

Return null

Task 7

Disable AppBar’s and phone’s back buttons

Summary

• Define model classes

• Navigate to another screens

• Passing data from a screen to another

• Return result to the previous screen

• Asynchronous programming

• Passing a copy of object

• Disable default back buttons

Jumail Bin Taliba
School of Computing, UTM

April 2020

Navigation and Routing

Named Routes

Why named routes?
• Reference a screen with name

• Create aliases
e.g. the home screen can be referenced with different names

/, /home, /main

• Define explicit names
e.g. constructing different screens from the same class

• /adminProfile refers to widget ProfileScreen('admin’)

• /userProfile refers to widget ProfileScreen('guest’)

• Centralize the routing code

How to implement named routes?
MaterialApp() provides two ways:

• onGenerateRoute

• routes

recommended

The demo will focus only on the “onGenerateRoute” approach

To learn about the “routes” approach, see the sample code (in the
using_routes branch)

git checkout using_routes

Demo App
Continue from the
previous app

Clone the source code

git clone https://github.com/jumail-utm/navigation_named_routes

Start from the base code

git checkout <the_base_commit>

git branch playground

Task 1

Prepare the base code

Task 2

Define and handle the named routes

"/summary" "/details"

Define and handle routes in MaterialApp()with
the onGenerateRoute parameter

Pass a COPY

original
assessment

object

the copy of
the object

Task 3

Navigate and pass data to the second screen

To navigate: Navigator.pushNamed()
To pass data: arguments

To receive the data:
In route handler, read from

settings.arguments

Then pass to next screen via

Constructor

How to pass multiple data

Wrap the data in an object

.pushNamed(..., arguments: Arithmetic(op: '+’,

numbers: [1, 2]));

Use collections such as map or list

.pushNamed(..., arguments: ['+', 10, 5]);

.pushNamed(..., arguments: {'op': '+’,

'num1': 10,

'num2': 5});

recommended

the copy of
the object

Return the edited object

Return null

Task 4

Return from the second screen with result

To return: Navigator.pop()
To pass result: via parameter

Task 5

Refactor routing code into separate files

void main()=>runApp(

MaterialApp(

onGenerateRoute:

)

);

Before

main.dart

Define and handle
Routes

void main()=>runApp(

MaterialApp(

onGenerateRoute: ….

)

);

After

main.dart

router.dart

Define and handle
Routes

constants.dart

route names

summary.dart

details.dart

Program’s file structure

ListTile
will be stateful

DropdownButton
will be stateful

Task 6

Reorganize the UI built, make only selected child widget stateful rather
than the whole screen

Summary

• Why use named routes

• Implementation: routes and onGenerateRoute

• Navigate and pass data to another screen

• Back to main screen and pass results

• Refactor routes

Jumail Bin Taliba
School of Computing, UTM

April 2020

Navigation and Routing

More Push and Pop
Operations

Agenda
• More pop operations:

• maybePop()

• canPop()

• popUntil()

• More push operations:
• pushNamed()

• pushReplacementNamed(),

• popAndPush()

• pushNamedAndRemoveUntil()

• How they work and some use cases

• Passing data and return results between routes

git clone https://github.com/jumail-utm/navigation_push_pop

There are two branches (besides master):

git branch –a (to check branch list)
git checkout more_pop (Example 1)
git checkout more_push (Example 2)

Download the source code

• Only one file, main.dart
• Only one Screen widget class
• Multiple routes from the same class

About the codebase

maybePop()

In Screen 3, invoking

Navigator.maybePop(context)

pops the screen from the stack

• It’s like pop()but doesn’t work on the last screen.
• Example use case: to prevent user from closing the app accidently

In Screen 2, invoking

Navigator.maybePop(context)

pops the screen from the stack

In Screen 1, invoking

Navigator.maybePop(context)

has no effect

canPop()
Returns true if a screen can be popped off from the stack
Example use case: to override phone back button

Example:
• Invoking this method in Screen 3 and 2 returns true
• Invoking this method in Screen 1 returns false

popUntil()

In Screen 3, invoking

popUntil(/screen1)

pops Screen 3 and Screen 2

• pop off all screens from the current one till reaching the specified screen.
• Must explicitly name the route with settings parameter
• Example use case: in a shopping app, to return to the home screen after

completing payment process

S
 T

 A
 C

 K
/screen1

/screen2

/screen3

More pop operations

S
 T

 A
 C

 K

/screen1

/screen2

/screen3

/replacement

pushReplacementNamed()

popAndPushNamed()

• Replace the current screen with a specified
one

• To prevent going back to the previous screen
• The difference between these two methods:

screen transition animation

S
 T

 A
 C

 K

pushReplacementNamed()

popAndPushNamed()

Example use cases:
1. sdfasd
•

• Show Main screen after a splash screen
• Open User screen after logging in

User Screen

S
 T

 A
 C

 K

/screen1

/screen2

/screen3

pushNamedAndRemoveUntil()

• Pops all screen till reaching the specified
screen and push a new screen

/replacement

S
 T

 A
 C

 K

Example use cases:
1. sdfasd
•

• Logout after going through a series of screens:
e.g. Logging out after submitting an assignment on elearning,

bring the user to Elearning Home Screen

Student Home

Assessement List

pushNamedAndRemoveUntil()

Course Screen

Assignment 1

Submit Screen

Logout
in Logout

Navigator.pushNamedAndRemoveUntil (
context,
‘/elearningHome’,
ModalRoute.withName(‘/studentHome’)

)

S
 T

 A
 C

 K

/screen1

/screen2

/screen3

Passing data and results between routes (1)

• A route may pass data to the next
route via the arguments parameter

• A route may return results to its
creator via the result parameter (or
the second parameter in case of pop()
method)

in Screen 3

Navigator.pushReplacementNamed
(context,’/replacement’,

arguments: …., result: ….)

/replacement

arguments
result

S
 T

 A
 C

 K

/screen1

/screen2

/screen3

Passing data and results between routes (2)
• The arguments is sent to onGenerateRoute callback function
• Then, passed to the route via the screen constructor

/replacement

arguments

S
 T

 A
 C

 K

/screen1

/screen2

/screen3

Passing data and results between routes (3)

• The creator route receives the result
from the function return

in Screen 2

theResult = await Navigator.pushNamed
(context,’/screen3’, arguments: ….)

result

