State Management

Stateful Widgets

vy

Jumail Bin Taliba

School of Computing, UTM
April 2020

* What is state
* What is state management

* Why state management
* How to manage state

e Stateful widgets

* Demo

are everything that
exist in memory

, €.g8., app’s assets, all
the variables that the app keeps,
animation states, texture, etc.

What are states?

* |n Flutter, states can be:
 Local (wrapped in a widget)

* App-wide (states shared across
different parts of the app code)

* Application states change over
time:
* user interactions
* backend interactions

Why state

management? -
* To make sure the App’s Ul

reflects to the state changes.

Example: Flutter counter app

counter

O &
Flutter Demo Home Page

Why state
management?

You have pushed the button this many times:

0

* Two main approaches :

State * Imperative
management * Declarative
approaches

* This is the approach you are
most familiar with.

* Examples:

* Windows Programming
* Web Programming
* Android and iOS Programming.

Imperative =] (=l + Need to consider to

change Ul ‘manually’

management

* Ul components are

* Key principles:
* determine the Ul component that
needs update,
e and invoke mutations on it.

Imperative State Management Example 1

Web Programming

<» indexhtml > € html

Example case: Changing text <!DOCTYPE html>

¢html lang="en™>
color on a web page j
<head>
<meta name="viewport" content="width=device-width, initial-scale=1.8">
¢title>Text Manipulation</title>
D Text Maripution * - ; ¢script src="script.js"></script>
C @ 1270015500/indexh.. % A B B @ 8 </head> R

<body >
¢div style="text-align: center;">

Hello World

Change color to Red Changle color to Blue

Imperative State Management Example 1

Web Programming

* To update the text color,

our code needs do it
JS scripts ..

1 function changeTextColor(color) {
* First, retrieve the node
(from DOM) that holds the
text

* Then, mutate (or change)
the desired attributes

Imperative State Management Example 2

.Net Programming

Example case: Changing text
COIOr on a deSktOp WlndOW Properties

txtDisplay System.Windows.Forms.Label

(DataBindings)

AccessibleDescription
AccessibleName

¥ Imperative Ul Programming Example in .NET framework - %, X s Dol

AllowDrop False
Anchor Top, Left
AutoEllipsis False
AutoSize True
BackColor - Control

BorderStyle None

H eI | O WO rI d CausesValidation True

Change Text to Blue

Cursor Default
Dock None
Enabled True
FlatStyle Standard
Font Segoe Ul, 40pt
ForeColor ControlText

GenerateMember True

Image (none)
ImageAlign MiddleCenter

Imagelndex (none)

ImageKey (none)
Imagelist (none)
LiveSetting Off

Imperative State Management Example 2

.Net Programming

o Imperative Ul Programming Example in .NET framework

Hello World

Change Text to Red

Change Text to Blue

frmMain.cs

HelloWorld

Elnamespace HelloWorld

e

1i HFormMain()

InitializeComponent();

: Form

d.formMain

focuses on Ul

to achieve.
. * The will handle
Declarative state to achieve that.
management * Used by Ul

frameworks such as React.js,
Vue.js, Flutter.

e Flutter uses declarative
approach

Declarative state QI Flutter, widgets are

management in
Flutter

* So, how does Flutter make Ul
able to change?

|t new widgets (and
replaces the existing ones)

e Stateful Widgets

Several
approaches to

e Stream Builder

manage states Iin
Flutter

* Provider

when the gets rebuilt, it also
rebuilds the children

How do widgets
get rebuilt?

How do widgets
get rebuilt?

get notified

Stateful widget = HomePage State:
k Text color

Update state'and
invoke setState()

Text FloatActionButton FloatActionButton
"Hello World" "Red" "Blue"

How do widgets
get rebuilt?

when StreamBuilders receive
streams

StreamBuilder

Stateful Widgets

What is a stateful
widget?

* A stateful widget is attached with

a .
 The state object is

Stateful widget : HomePage

Update state and invoke
setState()

Text FloatActionButton FloatActionButton
"Hello World" "Red" "Blue"

Each state object has an essential

method called

Invoking this method causes the
(so do the

children)
During the rebuilding, widgets use
current state stored in the state object

What is a stateful
widget?

State:
Text color

Update state and invoke
setState()

1

Text FloatActionButton FloatActionButton
"Hello World" "Red" "Blue"

Attendance

Sign in on elearning
The keyword is given in the video

Demo Hello World

Changing text color and font size

) Preparing Starter Code

1. Open Git Bash

2. Clone my github repo (command below should be in one-line)

git clone https://github.com/jumail-
utm/ dge :

3. Move to the project directory
cd stateful widget text

4. Check what inside the repo
git log --oneline

5. Pick the first commit (‘initial project — stateless widget’) and create a new
branch from there.

git checkout 37 -b playground

6. Open the project into VS Code
code

Stateless Home Screen

import ‘package:flutter/material.dart’;

void main() => runApp(MaterialApp
| title: 'hello world”,
L home: Home

)i

goverride

Widget build(BuildContext context) {

return scaffold(
F—hﬂdy: Center

Hello World

mainAxisAlignment: MainAxisAlignment.end,
| children: <Widget>[
—— FloatingActionButton.extended
| | onPressed: ()
| Llabel: Text('Red'),
| backgroundColor: Colors.red,
HRE
L FloatingActionButton.extended
| onPressed: ()
L_1abel: Text(e’),
backgroundColor: Colors.blue,

Convert Home Screen to Stateful Widget

rt 'package:flutter/material.

void main() => runApp(MateriallApp
| title: "hello world®,

Home({),

(BuildContext context) {
urn Scaftfold(
body: center

Hello World

L floatingActionButton: J
| mainAxisAlignment: MainAxisAlignment.end,
| children: <Widget>[
I FloatingActionButton.extended
| onPressed: .
L-label: Text('Red'),
backgroundColor: Colors.red,

E

L FloatingActionButton.extended
| onPressed
L label: T

Notify to rebuild Home Screen via setState()

package:flutter/material.dart’;

» void main() => runApp(MaterialApp

I
L

dget build(BuildContext context) {
return Scaffold(
body: center
L floatingActionButton: Row
| mainAxisAlignment: MainAxisAlignment.end,
| children: <Widget>[
FlopatingActionButton.extended

Hello World

label: Text('Red"),
backgroundColor: Colors.red,

¥

L FloatingActionButton.extended

| onPressed:
L_label: Te: (‘Blue"),
backgroundColor: Colors.blue,

Which widget to be stateful?

RLLLLLLLLLLLLLLE P

: HomePage

Hello World

Text FloatActionButton FloatActionButton
"Hello World" "Red" "Blue"

* Determine which part of the code is going to use the
state

e e.g., TextStyle(color:...) in the Text widget

* Determine which part of the code is going to update
the state

* e.g.inonPressed of the buttons

Which widget to be stateful?

.‘
i HomePage
Hello World k

State:

FloatActionButton FloatActionButton
color and size "Hello World" "Red" "Blue"

* Theoretically, the Text widget should be stateful as
Ul update done only on it

 However, the buttons (to update the state)
if state object are put in the

Text widget

Which widget to be stateful?

Statefljl widget

RULLLLLLLLLLLLETEY
State: . ®HomePage
color and size ’

Hello World

Text FloatActionButton FloatActionButton
"Hello World" "Red" "Blue"

* A common technique: Lift State Up

* Put the state to the common ancestor in the widget
tree

* HomePage screen is the best place to put the
state, thus make it Stateful widget

When it gets rebuilt, so do its children

Write setState() in setter for convenience

‘package:flutter/material.dart’;

void main() => runApp(MaterialApp

» class Home

build{BuildContext context) {
return Scaffold(
Hello World Fbody: center
L floatingActionButton: Row
| mainAxisAlignment: MainAxisAlignment.end,
| children: <Widget>[
FloatingActionButton.extended

backgroundColor: Colors.red,

3

FloatingActionButton.extended

("Blue’)
backgroundColor: Colors.blue,

Add another state, the font size

import ‘package:flutter/material.dart’;
void main() => runApp(MaterialApp
class Home ends StatefulWidget {-
_HomeState extends ate<Home> {
Color _color lors.black;

t color =» color;
zet color(value) => setState() =»> _color = value};

Hello World

(BuildContext context) {
eturn Scaffold(
: Center

Row

Add a Slider to control the font size

L
¥

> void main() => runApp(MaterialApp
» class Home extends StatefulWidget {

class _HomeState extends State<Home>» {
Color color = Colors.black;
color => color;
set color({value) =»> setState() =» color = value);

double

17

17

w0y
IT
T
Ln

T
t
L

Hello World

override
Widget build(BuildContext context) {

return Scaftfold(
|—bﬂd}-’: Center

max: 16848,

Refactor the buttons using a new method

Widget build(BuildContext context) {
return Scaffold(
F—body: Center/ -
- floatingActionButton: Row
| | mainAxisAlignment: MainAxisAlignment.end,

| | children: <widget>[

L bottomSheet: SizedBox -

Hello World)

Refactor the buttons using a widget class

@override
Widget build(BuildContext context) {
return Scaffold(
I-body: center --
|- floatingActionButton: Row
| | mainAxisAlignment: MainAxisAlignment.end,
children: <Widget>

15
|),

L pottomsheet: SizedBox/ --

Hello World M

1
J

}

class Button extends StatelessWidget E

e States are App’s data - running

e State management — app’s
data and Ul in-sync

Summa ry * Imperative vs declarative Ul

e Several approaches to manage
states

e Stateful widgets — setState()

