
Getting Started
with Flutter

Jumail Bin Taliba
School of Computing, UTM

March 2020

Outline

• Creating Flutter Projects

• Flutter Project Structure

• Building UI by example

Several ways of
creating Flutter

projects

• From VS Code

• Using Flutter tool from
Command Line (Git Bash, Cmd
or Powershell)

• Clone from an existing project

Creating Flutter Project from VS Code

1. In VS Code, open Command Palette, Ctrl Shift P

2. Choose from the menu, Flutter New Project

Creating Flutter Project with CLI
1. Open Git Bash

2. Move to the directory where you save all your flutter projects.

cd d:/code/flutter

3. Create a new directory in it for your new project

mkdir flutter_counter

4. Move to the new project directory

cd flutter_counter

5. Run flutter tool to start creating the project (don’t forget the dot)

flutter create .

6. Open the source code into VS Code (don’t forget the dot)

code .

Creating Flutter Project by cloning
1. Copy the folder of any of your existing project.

• You can clone from git file (created with git bundle), or from online repo (e.g. github)

• You can copy from a zip file, or a folder

In the following example, we are going to copy / clone from my project template
on github.

2. Clone my github repo (command below should be in one-line)
git clone https://github.com/jumail-

utm/flutter_template.git my_project

You can use any project name. Here, we use my_project

3. Move to the project directory

cd my_project

4. Run flutter tool to properly rename the project (don’t forget the dot)

flutter create –project-name .

5. Open the source code into VS Code (don’t forget the dot)

code .

Flutter Project Structure

you will work on this file(s)

to download dependencies

Basic Flutter Program

For Convenience

• Install VS Code extensions
• Flutter

• Enable: UI guides

• Bracket Pair Colorizer

• Pub spec Assist

• Use USB debugging (i.e. running directly on real phone)
• Enable USB debugging and developer mode in your phone

• Use Hot Reload or Hot Restart when debugging your code
• Hot Reload : Ctrl F5

• Hot Restart : Ctrl Shift F5

Introduction to Widgets

• What is a widget?
• The building blocks that construct the

application

• Widgets in Flutter are immutable

• Type of widgets:
• Stateless – does not change at all

• Stateful – can change to reflect the state

• Common widgets:
• App widgets (e.g. MaterialApp)

• Convenience widgets: Scaffold, NavigationBar,
AppBar

• Layout widgets: Column, Row, ListView

• Text widgets: Text, RichText

• Button widgets: IconButton, RaisedButton,
FloatingActionButton

• Graphics widgets: Image, Icon

Building UI, example: Whatsapp Clone

Preparing Starter Project (1)

1. Open Git Bash

2. Clone my github repo (command below should be in one-line)

git clone https://github.com/jumail-

utm/flutter_whatsapp_ui

3. Move to the project directory

cd flutter_whatsapp_ui

4. Go to the starting point of the project and create a new branch to start
editing

git checkout b35b0b8 –b playground

5. Open the source code into VS Code (don’t forget the dot)

code .

6. Try running the program by pressing F5 (you want to choose an emulator
first)

Git Basics
git log --oneline

b35b0b8
Starter project

master
branch

d679b34
Add appBar

playground
branch

git checkout b35b0b8 –b playground

1st commit
on master

2nd commit
on master

last commit
on master

Your new commit
on playground

f563d56
Remove Bottom…

Preparing Starter Project (2)

Creating a Material App

Creating a Home Screen (1)

Creating a Home Screen (2)

What is MaterialApp?

• A convenience widget that wraps a number of widgets
commonly required for applications that embraced material
design.

• It provides a bunch of things including:
• Theming

• Routing

• Main route (home)

• Localization

• MaterialApp is used to organize multiple screens for the app

Scaffold

• Provides the basic visual layout structure based on material
design.

• It provides a bunch of things including:
• appBar

• drawer and endDrawer

• bottomNavigationBar

• Body

• floatingActionButton

• SnackBar

• Scaffold is commonly used to build UI for a screen

Scaffold Components (1)

appBar

body

bottomNavigationBar

floatingActionButton

Scaffold Components (1)

drawer endDrawer

AppBar Components

leading title actions

bottom

flexibleSpace

Adding AppBar

Adding TabBar

TabBar must have TabController

Adding TabView

Adding FloatingActionButton

bottomNavigationBar (1)

bottomNavigationBar (2)

AppBar’s flexibleSpace and SafeArea

Refactoring

• As you progress building the UI, the widget tree grows very
quickly making the code less readable.

• Thus, it is important to refactor the code to make it more
readable and much easier to work with.

• Basic strategy is by splitting code into several pieces of code
rather than putting it in a single bulky one.

Single code

Code 1

Code 2

Code 3

Code 4

refactor

How to
Refactoring

• Refactor to constants

• Refactor to methods and
functions

• Refactor to classes

• Further refactoring: files and
directories

How to Refactoring (1)

Refactor to constant
Delegate widget creation

to variables

Before refactoring

After refactoring

In VS Code:
Extract Local Variable

How to Refactoring (2)

Refactor to method
Split code within the class

In VS Code:
Extract Method

After refactoring

How to Refactoring (3)

Refactor to function
Split code to outside of class

In VS Code:
Extract Method

After
refactoring

How to Refactoring (4)

Refactor to class
Split code to different classes.
It iRecommended approach

In VS Code:
Extract Widget

After
refactoring

How to Refactoring (5)
• Further refactoring to separate files

• It is a good practice to use dedicated files and directory structure
• Easy to maintain

• Easy to scale

• Better for teamwork

• Example project

directory structure:

Refactoring Our Code (1)

Here, we are using
Refactoring to functions

After
refactoring

Refactoring Our Code (2)

Refactoring AppBar

Refactoring Our Code (3)

Refactoring TabBarView and
FloatingActionButton

Several ways to
add ListView

• ListView (….)

• ListView with collection-for

• ListView.builder (….)

Adding ListView – Approach 1, ListView()

Add to CHATS Tab, in function
_buildTabBarView()

This approach is suitable for list with known size

Adding ListView – Approach 2, with collection-for

This approach can be used for dynamic list

Adding ListView – Approach 3, ListView.builder()

• Another approach for dynamic list.
• It is recommended approach.
• Suitable for large list
• Removing itemCount will create an infinite list

Adding ListTile, the components

leading
title

subtitle
trailing

Adding ListTile

Several ways to
add separators

• Wrapped with Container
widget and specify decoration

• Wrapped width Card widgets

• ListTile.divideTiles()

• ListView.separated (….)

Adding Separator – Approach 1, wrapped with Container

Decorate the bottom border of the container from
the attribute decoration

Adding Separator – Approach 2, wrapped with Card

Adding Separator – Approach 3, ListTile.divideTiles()

For static list, used with ListView() constructor

Adding Separator – Approach 3, ListTile.divideTiles()

This example is the same as in the previous slide, except
this time high order method map is used instead of
collection for

Adding Separator – Approach 4, ListView.separated()

Has dedicated builder (callback) to build separator

Adding SnackBar

• In this example, a snakebar will pop up when a chat
message is long pressed

• Snackbar is called from a Scaffold

Drawer
• Adding drawers: drawer and

endDrawer

• Open drawer
programmatically

Adding Drawer (1)

Add to Scaffold, in class Home• Drawer is part of Scaffold.

• Drawer is specified with the
attributes drawer and
endDrawer.

• To add the drawer menu on
AppBar automatically, do
not specify the attribute
leading and actions .

• If leading and actions
are specified manually, the
drawers will need to ben
opened programmatically.

• In the next example we are
going to add a drawer that
will open without needing
explicit code.

Adding Drawer (2)

Unset the leading attribute of AppBarBy not specifying the
leading attribute, it means

• Icon button for the drawer
on the AppBar will be
added automatically

• No explicit code for
opening the drawer. Default
code will be used

Adding Drawer (3)

Build the drawer with Drawer widget• Drawer can be built with any
widget.

• Common use case, using
ListView widget with
DrawerHeader on top
followed by ListTiles

Open Drawer Programmatically (1)

Specify a callback for onTap of the last action button
of AppBarBy specifying the leading or

actions attribute of
AppBar , it means

• Custom Icon button will b e
used for the drawer.

• The drawer will need to be
open programmatically.

In the next example, we are
going to open the
endDrawer

programmatically

Note that drawers are under
Scaffold, thus we need to open
the drawer from Scaffold

Open Drawer Programmatically (2)

Build the drawer with Drawer widget

Summary

• Different ways to create flutter
projects

• Introduction to Widgets

• Common widgets

• Refactoring

