

School of Computing Faculty of Engineering UNIVERSITI TEKNOLOGI MALAYSIA

SUBJECT : SECR1013-02 DIGITAL LOGIC

SESSION/SEM: 20202021/SEM1

LAB 3 : SYNCHRONOUS DIGITAL COUNTER

NAME : ONG HAN WAH

MATRIC NO. : A20EC0129

DATE : 29 JANUARY 2021

Lab #3

Identifying the Properties of a Synchronous Counter

A. Aims

- 1) Expose the student with experience on constructing synchronous counter circuit using Flip-Flop IC, Basic Gate ICs, Breadboard and ETS-5000 Digital Kit.
- 2) Promote critical thinking among students by analysing the given circuit and identifying the behaviour of the digital circuit.

B. Objectives

The objectives of this lab activity are to:

- 1) Implement a synchronous counter circuit into physical circuit using Breadboard, Flip-Flops, Basic Gates and Switches.
- 2) Completing the next-state table of the counter circuit.
- 3) Sketch the state diagram of the counter circuit.
- 4) Identify the properties of the counter.

C. Materials And Equipment

Materials and equipment required for this lab are as follows:

Item Name	Number of Item
1. Breadboard	1
2. 7408 Quad 2-Input AND	1
3. 7404 Hex Inverter	1
4. 7432 Quad 2-input OR	1
5. 7476 Dual J-K Flip Flop	1
6. ETS-5000 Digital Kit	1

D. Preliminary Works

1) Determine the logic level for each input combinations in Table 1 so that the desired result can be realized.

Table 1

Desired Result	PRE	<u>CLR</u>	J	K	CLK	Q
Set initial value Q = 1	0	1	X	X		1
Output Q stays the same	1	1	0	0	#	1
Output Q become 0, no change in asynchronous input	1	1	0	1		0
Output Q is not the previous Q	1	1	1	1	#	1
RESET Q	1	1	0	1	#	0
SET Q	1	1	1	0	#	1

- 2) Answer all questions.
- a) Which state that JK flip-flop has, but not on SR flip-flop.

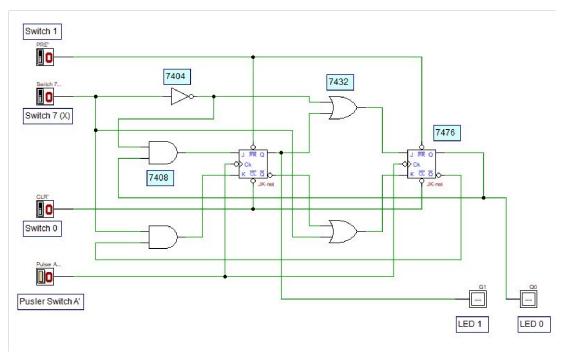
Toggle state

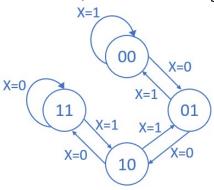
b) Identify whether the JK flip flop in 7476, is a positive-edge triggered or negative-edge triggered flip flop.

negative-edge triggered

E. Lab Activities

1) You are given a counter circuit as shown in Figure 4.



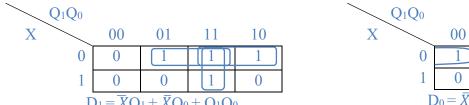

Figure 4: A Synchronous Counter Circuit

- 2) By using all materials and equipment's listed in section C, construct the physical circuit of Figure 4. (Make sure all ICs are connected to Vcc and GND).
- 3) Investigate the behaviour of the counter by observing the next state of the counter for all combination of *Present State* and *X* values. Complete the *NextState* table of the counter in Table 2. Ensure the Switch 0 is in HIGH state. (0=LOW, 1=HIGH)

Table 2

Switch 7	Pı	Present State		xt State
X	Q1 LED 1	Q0 LED 0	Q1 LED 1	Q0 LED 0
0	0	0	0	1
0	0	1	1	0
0	1	0	1	1
0	1	1	1	1
1	0	0	0	0
1	0	1	0	0
1	1	0	0	1
1	1	1	1	0

4) By referring to the *Next-State* in Table 2, sketch the state diagram of the counter.

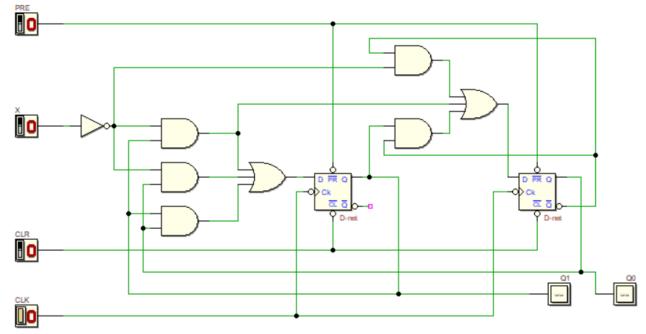


- 5) By referring to the *Next-State* in Table 2 and the state diagram in (4), answer all questions.
 - a) What is the main indicator to decide that the counter is a synchronous counter? If all flip-flops have the common clock, then the counter is synchronous counter.
 - b) How many states are available for the counter and what are they? four states: 00, 01, 10, 11
 - c) What is the function of Switch 7 (X) in the circuit? To control the count direction up or down
 - d) What is the function of Switch 0 and Switch 1 in the circuit? Switch 1 to SET the counter and Switch 0 to RESET the counter.
 - e) Is the counter a saturated counter or recycle counter? Saturated counter
- 6) Referring to state diagram in 4, draw and built a synchronous counter using D flip-flop.
 - a) Built the next state and transition table using the header in Table 3

Table 3

Input	Present	State	Next State		D FF T	ransition
X	Q1	Q0	Q1+	Q0+	D1	D0
0	0	0	0	1	0	1
0	0	1	1	0	1	0
0	1	0	1	1	1	1
0	1	1	1	1	1	1
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	0	1	0	1
1	1	1	1	0	1	0

b) Get the optimized Boolean expression.

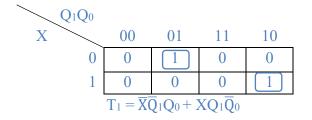


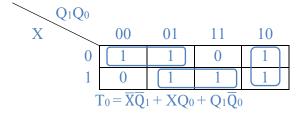
01

11

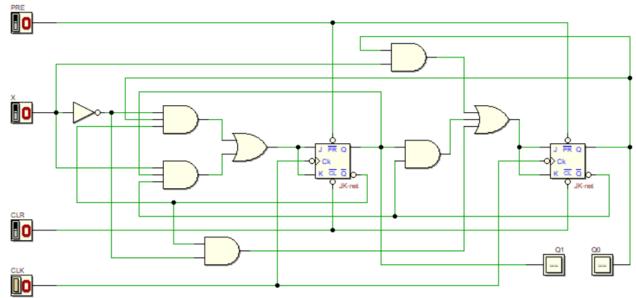
10

c) Draw the complete final circuit design in Deeds.


d) Simulate the circuit to prove that your Table 3 is correct.


The next-states are the same as in Table 3.

- 7) Repeat steps in Q(6) using T flip-flop.
 - a) Built the next state and transition table.


Input	Present	State	Next State		T FF T	ransition
X	Q1	Q0	Q1+	Q0+	T1	T0
0	0	0	0	1	0	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	0	0
1	0	0	0	0	0	0
1	0	1	0	0	0	1
1	1	0	0	1	1	1
1	1	1	1	0	0	1

b) Get the optimized Boolean expression.

c) Draw the complete final circuit design in Deeds.

d) Simulate the circuit to prove that your Table is correct.

The next-states are the same as in the table.