

Semester 2020/2021

Subject : Digital logic

Section : 06

Task : Lab 3

Submission: 28/01/2021

Group member

Toya Lazmin Khan A20EC0284

G M SHAHEEN SHAH SHIMON A20EC0266

Lecturer: Dr. Yusuf Patel Dawoodi

D. Preliminary Works

1.

Table 1

Desired result	PRE'	CLR'	J	К	CLK	Q
Set initial value $Q = 1$	0	1	Х	Х		1
Output Q stays the	1	1	0	0	₩	1
same						
Output Q become 0,						
no change in	1	1	1	1	1	0
asynchronous input						
Output Q is not the	1	1	1	1	₩	1
previous Q						
RESET Q	1	1	0	1	₩	0
SET Q	1	1	1	0	#	1

- 2. a) JK toggles when J is active (HIGH) and K is also active (HIGH)
 - b) Negative edge triggered

E. Lab Activities

1.

Figure 4: A Synchronous Counter Circuit

2.

Figure 5: A Synchronous Counter Circuit

3.

Table 2

Switch 7	Prese	ent State	Next State	
X	Q1	Q0	Q1	Q0
	LED 1	LED 0	LED 1	LED 0
0	0	0	0	1
0	0	1	1	0
0	1	0	1	1
0	1	1	1	1
1	0	0	0	0
1	0	1	0	0
1	1	0	0	1
1	1	1	1	0

4. State diagram

- **5. a)** Both flip-flop are triggered with same clock simultaneously
 - **b)** There are 4 states: 00,01,10,11
 - c) Switch 7 is count direction, it will determine if counter will go up or down. X=1(count down) and X=0 (count up)

d) There are asynchronous inputs, if both set to 1, JK can work synchronously. Switch 1 is active (HIGH), it presets output to 1 and when switch 0 is active, it clears the output to 0

e) Yes, it is saturated counter.

6. a) Table 3

Switch 7	Present State		Next State		D FF Transition	
X	Q1	Q0	Q1	Q0	D1	D0
	LED 1	LED 0	LED 1	LED 0		
0	0	0	0	1	0	1
0	0	1	1	0	1	0
0	1	0	1	1	1	1
0	1	1	1	1	1	1
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	0	1	0	1
1	1	1	1	0	1	0

b)

Boolean expression:

D1 = X'Q1+ X'Q0+ Q1Q0

D0 = X'Q0' + Q1Q0' + X'Q1

Circuit design for D FF

c) Count up

LED 1

Q1'

Pulser A

Count down

7. a)

Table 4

Switch 7	Present State		Next State		D FF Transition	
X	Q1	Q0	Q1	Q0	T1	T0
	LED 1	LED 0	LED 1	LED 0		
0	0	0	0	1	0	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	0	0
1	0	0	0	0	0	0
1	0	1	0	0	0	1
1	1	0	0	1	1	1
1	1	1	1	0	0	1

k-map for T flip-flop

Boolean expression: T1=X'Q1'Q0 + XQ1Q0' T0=X'Q1' + Q1Q0' + XQ0

Circuit design for T FF

Simulation

Count up

Count down

