

ASSIGNMENT 1

DISCRETE STRUCTURE (SECI 1013) SEMESTER I, SESSION 2020/2021

Lecturer: Dr. Haswadi Bin Hasan

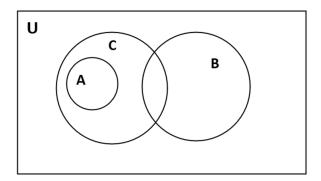
Group: 7	
Name	Matric
AHMEDALLA HANEA HAMZA HAFEZ HANOURA	A19EC4045
RADIN NAZHAN BIN RADIN JAMZULKOMAR	A20EC0136
MD. TAWFIQUZZAMAN	A20EC4036

Section: 07

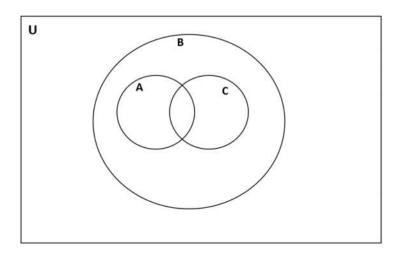
-) A= {X \in R \lo < x \le 2 \}, B = { x \in R \lo \le 4 \},

 C = { X \in R \lo 3 \le x \le 9 }
- a) AUC = {x < R | 0 < x < 2 or 3 < x < 9}
- b) (AUB) = {x ∈ R | ¬(o< x<4)} = {x ∈ R | x < o o r x ≥ 43
- C) A'UB' = $\{x \in R \mid o \geq x \text{ or } 2 < x \} \cup \{x \in R \mid 1 > x \text{ or } 4 \leq x \}$ = $\{x \in R \mid x < 1 \text{ or } 2 < x \}$

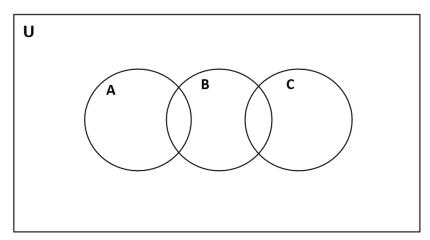
a) $A \cap B = \emptyset$, $A \subseteq C$, $C \cap B \neq \emptyset$



b) $A \subseteq B$, $C \subseteq B$, $A \cap C \neq \emptyset$



c) $A \cap B \neq \emptyset$, $B \cap C \neq \emptyset$, $A \cap C = \emptyset$, $A \not\subset B$, $C \not\subset B$



3) $A = \{-1, 1, 2, 4\}$ and $B = \{1, 2\}$ $A \times B = \{(-1, 1), (-1, 2), (1, 1), (1, 2), (2, 1), (2, 2), (4, 1), (4, 2)\}$ $\text{For all } (X,Y) \in AXB, XSY \longleftrightarrow |X| = |Y|$ $\text{So, Srelation between } AXB: |-1| = 1, |-1| \neq |2|, |1| = |1|, |1| \neq |2|,$ $|2| \neq |1|, |2| = |2|, |4| \neq |1|, |4| \neq |2|.$

Thus, S= {(-1,1),(1,1),(2,2)}

for all (x,y) EAxB, XTy -x-y = even

So, T relation between AxB: (-1)-1 = even, (-1)-2 \neq even, |-1 = even, 1-2 \neq even, 2-1 \neq even, 2-2 = even, 4-1 \neq even, 4-2 = even.

Thus, T = {(-1,1),(1,1),(2,2),(4,2)}

 $S \cap T = \{(x,y) \in A \times B \mid (x,y) \in S \text{ and } (x,y) \in T \}$ = $\{(-1,1), (1,1), (2,2)\}$

 $SUT = \{(x,y) \in AxB \mid (x,y) \in Sor (x,y) \in T\}$ = $\{(-1,1), (1,1), (2,2), (4,2)\}$

4.
$$\neg (\neg \rho \land q) \lor (\neg \rho \land \neg q) \lor (\rho \land q)$$

= $\neg (\neg \rho \land q) \land \neg (\neg \rho \land \neg q) \lor (\rho \land q)$ [De Morgan's Laws]

= $(\rho \lor \neg q) \land (\rho \lor q) \lor (\rho \land q)$ [Distributive Laws]

= $\rho \lor (\neg q \land q) \lor (\rho \land q)$ [Complement Laws]

= $\rho \lor (\rho \land q)$ [Identity Laws]

= $\rho \lor (\rho \land q)$ [Identity Laws]

Q5)

a)
$$A_1 = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

b)
$$A_2 = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \end{bmatrix}$$

c) Since the main diagonal element of matrix A_1 is not all consist of 1's, therefore R_1 is not reflexive.

$$A_1 \text{ Transpose} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Since matrix A_1 is equal to matrix A_1 Transpose, therefore R_1 is symmetric.

Since $A_1 \otimes A_1 \neq A_1$, therefore R_1 is not transitive.

Since R₁ is not reflexive and not transitive, therefore R₁ is not equivalence relation.

d) Since the main diagonal element of matrix A_2 is not all consist of 1's, therefore R_2 is not reflexive.

Since for all $(y,z) \in R_2$ and $y \neq z$, $(z,y) \notin R_2$, therefore R_2 is antisymmetric.

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \end{bmatrix}$$

Since $A_2 \otimes A_2 \neq A_2$, therefore R_2 is not transitive.

Since R₂ is not reflexive and not transitive, therefore R₂ is not partial order relation.

6)
$$R_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$
, $R_2 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$

a)
$$R_1 \cup R_2 = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$
, b) $R_1 \cap R_2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$

Q7)

7)

We need to prove that $\forall x, y \in \mathbb{R}$ $(f+g)(x)=(f+g)(y) \rightarrow x=y$ So, using indirect proof $\Rightarrow \neg q \rightarrow \neg P$ $x \neq y \rightarrow (f+g)(x) \neq (f+g)(y)$ $x \neq y \rightarrow (x) \neq f(y)$ and $g(x) \neq g(y)$

We can see that f and g is in one-to-one relation

Both using one-to-one. Thus, F+g is one-to-one also.

Q8)

When n = 1

The different ways to climb the staircase:

(1)

The number of different ways to climb the staircase, $c_1 = 1$

When n = 2

The different ways to climb the staircase:

(1,1), (2)

The number of different ways to climb the staircase, $c_2 = 2$

When n = 3

The different ways to climb the staircase :

(1,1,1), (1,2), (2,1)

The number of different ways to climb the staircase, $c_3 = 3$

When n = 4

The different ways to climb the staircase:

(1,1,1,1), (1,1,2), (1,2,1), (2,1,1), (2,2)

The number of different ways to climb the staircase, $c_4 = 5$

When n = 5

The different ways to climb the staircase:

(1,1,1,1,1), (1,1,1,2), (1,1,2,1), (1,2,1,1), (2,1,1,1), (1,2,2), (2,1,2), (2,2,1)

The number of different ways to climb the staircase, $c_5 = 8$

The sequence of c_n is 1, 2, 3, 5, 8,

The recurrence relation for $c_1,\,c_2,\,\ldots..,\,c_n$ is

 $c_n = c_{n\text{-}1} + c_{n\text{-}2}$, $n \geq 3$ with $c_1 = 1$ and $c_2 = 2$

a)
$$t_3 = t_2 + t_1 + t_6 = 1 + 1 + 0 = 2$$

 $t_4 = t_3 + t_2 + t_1 = 2 + 1 + 1 = 4$
 $t_5 = t_4 + t_3 + t_2 = 4 + 2 + 1 = 7$
 $t_6 = t_5 + t_4 + t_3 = 7 + 4 + 2 = 13$
 $t_7 = t_6 + t_5 + t_4 = 13 + 7 + 4 = 24$