

SECR1013 DIGITAL LOGIC

Lab 3 Synchronous Digital Counter

Lecturer Name: Mr Firoz bin Yusuf Patel Dawoodi Section 08

Prepared by: Group 5

NAME	MATRIC NO
WONG HUI SHI	A20EC0169
TEOH WEI JIAN	A20EC0229

Submission Date: 28 JAN 2021

E. Preliminary Works

1) Using 7476 IC, connect the synchronous input (J, K) of a JK flip-flop to switches and its output (Q) to an LED. Connect the CLK input to a pulser switch, A. Determine the logic level for each input combinations in Table 1 so that the desired result can be realized.

Table 1

Desired Result	PRE	<u>CLR</u>	J	K	CLK	Q
Set initial value Q = 1	0	1	X	X		1
Output Q stays the same	1	1	0	0	₩	1
Output Q become 0, no change in asynchronous input	1	1	1	1	₩	0
Output Q is not the previous Q	1	1	1	1	U	1
RESET Q	1	1	0	1	₩	0
SET Q	1	1	1	0	U	1

- 2) Answer all questions.
 - a) Which state that JK flip-flop has, but not on SR flip-flop.

Toggle

b) Identify whether the JK flip flop in 7476, is a positive-edge triggered or negative-edge triggered flip flop.

Negative edge triggered flip flop.

F. Lab Activities

1) You are given a counter circuit as shown in Figure 4.

Figure 4: A Synchronous Counter Circuit

- 2) By using all materials and equipment's listed in section C, construct the physical circuit of Figure 4. (Make sure all ICs are connected to Vcc and GND).
- 3) Investigate the behavior of the counter by observing the next state of the counter for all combination of Present State and X values. Complete the Next-State table of the counter in Table 2. Ensure the Switch 0 is in HIGH state. (0=LOW, 1=HIGH)

$$\begin{aligned} J_0 &= \overline{X} + Q_1 \\ K_0 &= X + \overline{Q_1} \end{aligned} \qquad \begin{aligned} J_1 &= \overline{X}Q_0 \\ K_1 &= X\overline{Q_0} \end{aligned}$$

Table 2

Switch 7	Presen	Present State Next S		State	
X	Q1 LED 1	Q0 LED 0	Q1 LED 1	Q0 LED 0	
0	0	0	0	1	
0	0	1	1	0	
0	1	0	1	1	
0	1	1	1	1	
1	0	0	0	0	
1	0	1	0	0	
1	1	0	0	1	
1	1	1	1	0	

4) By referring to the Next-State in Table 2, sketch the state diagram of the counter.

- 5) By referring to the Next-State in Table 2 and the state diagram in (4), answer all questions.
 - a) What is the main indicator to decide that the counter is a synchronous counter? Pulser Switch A.
 - **b)** How many states are available for the counter and what are they? 4 states are available for the counter. They are 00, 01, 10 and 11.
 - c) What is the function of Switch 7 (X) in the circuit? Switch 7 (X) is the input mode selector.
 - **d)** What is the function of Switch 0 and Switch 1 in the circuit? Switch 0 is clear which is used to direct RESET the output of flip-flops. Switch 1 is preset which is used to direct SET the output of the flip-flops.
 - e) Is the counter a saturated counter or recycle counter? Recycle counter

- 6) Referring to state diagram in 4, draw and built a synchronous counter using D flip-flop.
 - a) Built the next state and transition table using the header in Table 3

Input	Preser	nt State	Next State		D FF Transition	
X	Q1	Q0	Q1+	Q0+	D1	D0
0	0	0	0	1	0	1
0	0	1	1	0	1	0
0	1	0	1	1	1	1
0	1	1	1	1	1	1
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	0	1	0	1
1	1	1	1	0	1	0

Table 3

b) Get the optimized Boolean expression.

Q1Q0				
X	00	01	11	10
0	0	1	1	1
1	0	0	1	0

$$\mathbf{D1} = \mathbf{Q1Q0} + \overline{X}\mathbf{Q0} + \overline{X}\mathbf{Q1}$$

Q1Q0				
X	00	01	11	10
0	1	0	1	1
1	0	0	0	1

$$\mathbf{D0} = \mathbf{Q}1\overline{\mathbf{Q0}} + \overline{\mathbf{X}}\,\overline{\mathbf{Q0}} + \overline{\mathbf{X}}\mathbf{Q1}$$

c) Draw the complete final circuit design in Deeds.

d) Simulate the circuit to prove that your Table 3 is correct.

7) Repeat steps in Q(6) using T flip-flop.

a) Built the next state and transition table using the header in Table 4

Input	Preser	nt State	Next State		T FF Transition	
X	Q1	Q0	Q1+	Q0+	T1	T0
0	0	0	0	1	0	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	0	0
1	0	0	0	0	0	0
1	0	1	0	0	0	1
1	1	0	0	1	1	1
1	1	1	1	0	0	1

Table 4

b) Get the optimized Boolean expression.

Q1Q0				
X	00	01	11	10
0	0	1	0	0
1	0	0	0	1

$$T1 = \overline{X} \overline{Q1}Q0 + XQ1\overline{Q0}$$

Q1Q0				
X	00	01	11	10
0	1	1	0	1
1	0	1	1	1

$$\mathbf{T0} = \overline{X} \ \overline{\mathbf{Q1}} + \ \overline{\mathbf{Q1}} \ \mathbf{Q0} + \ \mathbf{XQ1} + \mathbf{Q1} \overline{\mathbf{Q0}}$$

c) Draw the complete final circuit design in Deeds.

d) Simulate the circuit to prove that your Table 3 is correct.

