D. Preliminary Work

1. Draw a symbol, determine the IC number and produce a truth table for the following gate.

AND —			NAN D		
T	uth table	1	To	uth table	2 ک
INPUT OUTPUT		INPUT OUT		OUTPUT	
A	В	F	A	В	F
0	0	0	0	0	1
200	L	0 .	0	1	I.
0					7
1	ð	0	1	0	ı

2. Complete the truth table for the following circuit.

	Truth	Table 3	
A	В	C	F
0	0	0	1
o	1	0	1
t	0	0	1
1	1	1	0

3. Write the Boolean expression for output C, D and F the following circuit.

$$C = A \cdot \overline{B}$$

$$p = \overline{A} \cdot B$$

$$f = (A \cdot \overline{B}) + (\overline{A} \cdot B)$$

4. Complete the truth table for the circuit in (3) based on the Boolean expression produced for C, D and F.

Truth table 4					
А	В	C	Ø	F	
0	0	Ø	0	0	
0	ţ	0	1	1	
t	0	ı	0	1	
l i	-i1	0	0	0	

E. Laboratory Work

Part 1

1. Construct Circuit 1 on the breadboard. Connect all inputs (A, B) to a switches and output F to LEDs.

Circuit 1

2. Test Circuit 1 and fill in Truth Table 5 for the circuit response to all possible input combinations. The Truth Table 5 should match the Truth Table 1 prepared in Preliminary Work.

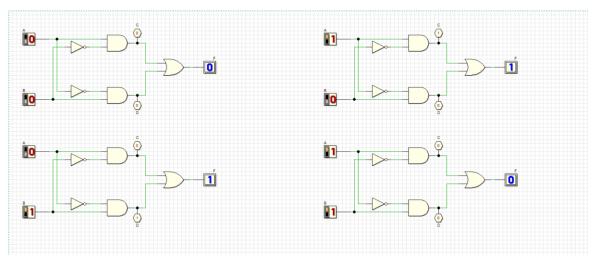
А	В	F
0	0	0
0	1	0
1	0	0
1	1	1

Truth Table 5

Part 2

3. Construct Circuit 2 on the breadboard. Connect all inputs (A, B) to a switches and output C and F to LEDs.

4. Test Circuit 2; fill in Truth Table 6, for the circuit to response to all possible input combinations.


А	В	С	F
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

Truth Table 6

- 5. Compare the Truth Table 6 to Truth Table 2. What conclusion can you make?
 - Both truth tables contradict each other. Thus, an inverter inverts the values in inputs

Part 3

6. Construct Circuit 3 on the breadboard. Connect all inputs (A, B) to a switches and output C, D and F to LEDs.

Circuit 3

7. Test Circuit 3; fill in Truth Table 7 for the circuit outputs (C, D and F) for all possible input combinations.

А	В	С	D	F
0	0	0	0	0
0	1	0	1	1
1	0	1	0	1
1	1	0	0	0

Truth Table 7

- 8. What single gate does Circuit 3 represent?
 - Circuit 3 represents XOR gate.