

School of Computing Faculty of Engineering UNIVERSITI TEKNOLOGI MALAYSIA

SUBJECT	:	SECR1013 DIGITAL LOGIC
SESSION/SEM	:	Semester 1
LAB 3	:	SYNCHRONOUS DIGITAL COUNTER
		Ahmad Muhaimin Bin Ahmad Hambali
NAME	:	
		29/1/2021
DATE		

Lab #3

Identifying the Properties of a Synchronous Counter

A. Aims

- 1) Expose the student with experience on constructing synchronous counter circuit using Flip-Flop IC, Basic Gate ICs, Breadboard and ETS-5000 Digital Kit.
- 2) Promote critical thinking among students by analysing the given circuit and identifying the behaviour of the digital circuit.

B. Objectives

The objectives of this lab activity are to:

- 1) Implement a synchronous counter circuit into physical circuit using Breadboard, Flip-Flops, Basic Gates and Switches.
- 2) Completing the next-state table of the counter circuit.
- 3) Sketch the state diagram of the counter circuit.
- 4) Identify the properties of the counter.

C. Materials And Equipment

Materials and equipment required for this lab are as follows:

Item Name	Number of Item
1. Breadboard	1
2. 7408 Quad 2-Input AND	1
3. 7404 Hex Inverter	1
4. 7432 Quad 2-input OR	1
5. 7476 Dual J-K Flip Flop	1
6. ETS-5000 Digital Kit	1

D. Preliminary Works

1) Determine the logic level for each input combinations in Table 1 so that the desired result can be realized.

Table 1

Desired Result	PRE	CLR	J	K	CLK	Q
Set initial value Q = 1	0	1	X	X		1
Output Q stays the same	1	1	0	0		1
Output Q become 0, no change in asynchronous input	1	1	0	1		0
Output Q is not the previous Q	1	1	1	1	₩	1
RESET Q	1	1	0	1	U	0
SET Q	1	1	1	0	U	1

- 2) Answer all questions.
- a) Which state that JK flip-flop has, but not on SR flip-flop.

Input 1 1, Toggle state

b) Identify whether the JK flip flop in 7476, is a positive-edge triggered or negative-edge triggered flip flop.

Negative-edge triggered flip flop

E. Lab Activities

1) You are given a counter circuit as shown in Figure 4.

Figure 4: A Synchronous Counter Circuit

- 2) By using all materials and equipment's listed in section C, construct the physical circuit of Figure 4. (Make sure all ICs are connected to V cc and GND).
- 3) Investigate the behaviour of the counter by observing the next state of the counter for all combination of *Present State* and *X* values. Complete the *Next State* table of the counter in Table 2. Ensure the Switch 0 is in HIGH state. (0=LOW, 1=HIGH)

Table 2

Switch 7	Pı	resent State	Next State		
X	Q1	Q0	Q1	Q0	
A	LED 1	LED 0	LED 1	LED 0	
0	0	0	0	1	
0	0	1	1	0	
0	1	0	1	1	
0	1	1	1	1	
1	0	0	0	0	
1	0	1	0	0	
1	1	0	0	1	
1	1	1	1	0	

4) By referring to the *Next-State* in Table 2, sketch the state diagram of the counter.

- 5) By referring to the *Next-State* in Table 2 and the state diagram in (4), answer all questions.
 - a) What is the main indicator to decide that the counter is a synchronous counter?The clock to both flip-flops is common.
 - b) How many states are available for the counter and what are they?
 4 states. 00, 01, 10, 11
 - c) What is the function of Switch 7 (X) in the circuit?

The count direction is controlled by an input X, if X = 1, the counter will count down, if X = 0, the counter will count up.

d) What is the function of Switch 0 and Switch 1 in the circuit?

These inputs are called the preset (PRE) and clear (CLR). The preset input drives the flip-flop to a set state while the clear input drives it to a reset state.

e) Is the counter a saturated counter or recycle counter?

saturated

- 6) Referring to state diagram in 4, draw and built a synchronous counter using D flip-flop.
 - a) Built the next state and transition table using the header in Table 3

Input	Present S	State	Next S	state	D FF Transition	
X	Q1	Q0	Q1+	Q0+	D 1	D 0
0	0	0	0	1	0	1
0	0	1	1	0	1	0
0	1	0	1	1	1	1
0	1	1	1	1	1	1
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	0	1	0	1
1	1	1	1	0	1	0

b) Get the optimized Boolean expression.

c) Draw the complete final circuit design in Deeds.

d) Simulate the circuit to prove that your Table 3 is correct.

Input	Present	State	Next S	State	D FF Transition	
\mathbf{X}	Q1	Q0	Q1+	Q0+	D1	D 0
0	0	0	0	1	0	1
0	0	1	1	0	1	0
0	1	0	1	1	1	1
0	1	1	1	1	1	1
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	0	1	0	1
1	1	1	1	0	1	0

Both outputs are the same.

7) Repeat steps in Q (6) using T flip-flop.

a) Built the next state and transition table

Input	Present	Present State		State	T FF Transition	
\mathbf{X}	Q1	Q0	Q1+	Q0+	T1	T0
0	0	0	0	1	0	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	0	0
1	0	0	0	0	0	0
1	0	1	0	0	0	1
1	1	0	0	1	1	1
1	1	1	1	0	0	1

b) Get the optimized Boolean expression.

c) Draw the complete final circuit design in Deeds.

d) Simulate the circuit to prove that your Table 3 is correct.

Input	Present State		Next S	State	T FF Transition	
X	Q1	Q0	Q1+	Q0+	T1	T0
0	0	0	0	1	0	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	0	0
1	0	0	0	0	0	0
1	0	1	0	0	0	1
1	1	0	0	1	1	1
1	1	1	1	0	0	1

Both outputs are the same.