DISCRETE STRUCTURE - ASSIGNMENT 4

(GROUP 6)

Name: Eunice Lim Xian Ni (A20EC0034)

Zhu Yi Chen (A20EC0285) Teh Jing Ling (A20EC0228)

1. Let G be a graph with $V(G) = \{1, 2, ..., 10\}$, such that two numbers 'v' and 'w' in V(G) are adjacent if and only if $|v - w| \le 3$. Draw the graph G and determine the numbers of edges, e(G).

e(G)=24

Edges List: (1,2), (1,3), (1,4), (2,3), (2,4), (2,5), (3,4), (3,5), (3,6), (4,5), (4,6), (4,7), (5,6), (5,7), (5,8), (6,7), (6,8), (6,9), (7,8), (7,9), (7,10), (8,9), (8,10), (9,10)

- 2. Model the following situation as graphs, draw each graphs and gives the corresponding adjacency matrix.
 - (a) Ahmad and Bakri are friends. Ahmad is also friends with David and Chong. David, Bakri and Ehsan all friends.

(Note that you may use the representation of A= Ahmad; B = Bakri; C =

Chong; D = David; E = Ehsan)

$$A \quad B \quad C \quad D \quad E$$

$$A \quad \begin{bmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ D \quad D \quad 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

- (b) There are 5 subjects to be scheduled in the exam week: Discrete Mathematics (DM), Programming Technique (PT), Artificial Intelligence (AI), Probability Statistic (PS) and Information System (IS). The following subjects cannot be scheduled in the same time slot:
 - i. DM and IS
 - ii. DM and PT
 - iii. AI and PS
 - iv. IS and AI

3. Show that the two drawing represent the same graph by labeling the vertices and edges of the right-hand drawing to correspond to left-hand drawing.

Answer:

4. Find the adjacency and incidence matrices for the following graphs.

$$A_G = \begin{bmatrix} V_1 & V_2 & V_3 & V_4 \\ V_2 & V_3 & V_4 \\ V_2 & 0 & 0 & 1 & 0 \\ V_3 & 0 & 0 & 1 & 0 \\ V_4 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Undirected graph
$$V_1 \quad V_2 \quad V_3 \quad V_4 \\
V_1 \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 2 \\ V_3 & 0 & 1 & 1 & 0 \\ V_4 & 0 & 2 & 0 & 0 \end{bmatrix}$$

$$I_G = \begin{matrix} V_1 \\ V_2 \\ V_3 \\ V_4 \end{matrix} \begin{bmatrix} e_1 & e_2 & e_3 & e_4 & e_5 & e_6 \\ 2 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{matrix} \end{bmatrix}$$

$$I_{H} = \begin{bmatrix} v_{1} & e_{2} & e_{3} & e_{4} & e_{5} & e_{6} \\ v_{2} & 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$

5. Determine whether the following graphs are isomorphic.

 G_{I}

Edited image for G2

- Number of vertices: Both 5
- Number of edges: Both 5
- Degrees of corresponding vertices:
 - G1: 3 vertices with degree 2, 1 vertex with degree 3, 1 vertex with degree 1
 - G2: 3 vertices with degree 2, 1 vertex with degree 3, 1 vertex with degree 1

$$A_{G1} = \begin{matrix} V_1 & V_2 & V_3 & V_4 & V_5 \\ V_1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ V_5 & 0 & 0 & 1 & 0 & 0 \end{matrix} \qquad \begin{matrix} u_5 & u_4 & u_2 & u_3 & u_1 \\ u_5 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{matrix}$$

 \therefore A_{G1} and A_{G2} are same. G_1 and G_2 are isomorphic.

b)

Number of vertices: Both 5 Number of edges: Both 6

Degrees of corresponding vertices: H_1 = 1 vertex with degree 5, 1 vertex with degree 3, 1 vertex with degree 2, 2 vertices with degree 1

 H_2 = 3 vertices with degree 3, 1 vertex with degree 2, 1 vertex with degree 1

 \therefore Degrees of corresponding vertices of H_1 and H_2 are not same. H_1 and H_2 are not isomorphic.

6. In the graph below, determine whether the following walks are trails, paths, closed walks, circuits/cycles, simple circuits or just walks.

- a) $v_0^e I^V I^e I 0^V 5^e 9^V 2^e 2^V I = \text{trail}$ (no repeated edge but repeated vertex)
- b) ${}^{v}4^{e}7^{v}2^{e}9^{v}5^{e}10^{v}1^{e}3^{v}2^{e}9^{v}5 = \text{walk (repeated edge and vertices)}$
- c) v_2 = walk (only one vertex)
- d) $v_5 e_9 v_2 e_4 v_3 e_5 v_4 e_6 v_4 e_8 v_5$ = closed trail (repeated vertices but no repeated edge and closed)
- e) $v_2^e 4^v 3^e 5^v 4^e 8^v 5^e 9^v 2^e 7^v 4^e 5^v 3^e 4^v 2$ = closed walk (repeated vertices and edge and closed)
- f) $v_3^e 5^v 4^e 8^v 5^e 10^v 1^e 3^v 2$ = path (no repeated vertex and edge)
- 7. Consider the following graph.

a) How many paths are there from v_1 to v_4 ?

3 paths

$$v_1e_1v_2e_2v_3e_5v_4$$
, $v_1e_1v_2e_3v_3e_5v_4$, $v_1e_1v_2e_4v_3e_5v_4$

b) How many trails are there from v_1 to v_4 ?

$$3 \times 2 \times 1 + 3 = 9$$

 $v_1 e_1 v_2 e_2 v_3 e_5 v_4$
 $v_1 e_1 v_2 e_3 v_3 e_5 v_4$
 $v_1 e_1 v_2 e_4 v_3 e_5 v_4$

$$v_1 e_1 v_2 e_2 v_3 e_3 v_2 e_4 v_3 e_5 v_4 v_1 e_1 v_2 e_2 v_3 e_4 v_2 e_3 v_3 e_5 v_4$$

$$v_1e_1v_2e_3v_3e_2v_2e_4v_3e_5v_4 \\ v_1e_1v_2e_3v_3e_4v_2e_2v_3e_5v_4$$

$$v_1 e_1 v_2 e_4 v_3 e_2 v_2 e_3 v_3 e_5 v_4 v_1 e_1 v_2 e_4 v_3 e_3 v_2 e_2 v_3 e_5 v_3$$

c) How many walks are there from v_1 to v_4 ? Infinite, ∞ . Uncountable.

8. Determine which of the graphs in (a) – (b) have Euler circuits. If the graph does not have a Euler circuit, explain why not. If it does have a Euler circuit, describe one.

a.

Vertex	v_1	v_2	v_3	v_4	v_5
Degree	2	4	2	4	4

Euler circuit because every vertex has even degree.

$$(v_2, e_2, v_5, e_7, v_4, e_6, v_5, e_3, v_2, e_4, v_3, e_5, v_4, e_8, v_1, e_1, v_2)$$

b.

Vertex	v_0	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8	v_9
Degree	2	5	2	2	2	4	2	3	3	3

Don't have Euler circuit because there are 4 vertices have odd degree.

9. For each of graph in (a) – (b), determine whether there is an Euler path from u to w. If there is, find such a path.

a.

Vertex	u	v_0	v_1	v_2	v_3	v_4	v_5	v_6	v_7	W
Degree	3	2	2	4	2	4	2	4	2	3

Euler path because there have 2 vertices with odd degree. $(u, v_7, v_0, v_1, u, v_2, v_6, v_5, w, v_6, v_4, v_2, v_3, v_4, w)$

b.											
٠.	Vertex	u	a	b	c	d	e	f	g	h	W
	Degree	3	2	2	2	2	3	4	2	3	3

No Euler path because there have 4 vertices with odd degree.

- 10. For each of graph in (a) (b), determine whether there is Hamiltonian circuit. If there is, exhibit one.
 - Both are not Hamiltonian circuit. In a, the path needs to pass through twice at vertex u and v_2 while in b, the path needs to pass through twice at vertex u and f.
- 11. How many leaves does a full *3-ary* tree with 100 vertices have?

$$l = \frac{[(3-1)100+1]}{3} = 67$$

12. Find the following vertex/vertices in the rooted tree illustrated below.

- a) Root = a
- b) Internal vertices = a, b, d, e, g, h, j, n
- c) Leaves = c, f, i, k, l, m, r, s, o, p, q
- d) Children of n = r and s
- e) Parent of e = b
- f) Siblings of k = 1 and m
- g) Proper ancestors of q = a, d, j
- h) Proper descendants of b = e, k, l, m, f, g, n, r, s
- 13. In which order are the vertices of ordered rooted tree in **Figure 1** is visited using *preorder*, *inorder* and

postorder.

Preorder = a, b, e, k, l, m, f, g, n, r, s, c, d, h, o, i, j, p, q

Inorder = k, e, l, m, b, f, g, r, n, s, a, c, o, h, d, i, p, j, q

Postoder = k, l, m, e, f, r, s, n, g, b, c, o, h, i, p, q, j, d, a

14. Find the minimum spanning tree for the following graph using Kruskal's algorithm.

15. Use Dijsktra's algorithm to find the shortest path from \mathbf{M} to \mathbf{T} for the following graph.

Iteration	S	N	L(M)	L(N)	L(O)	L(P)	L(Q)	L(R)	L(S)	L(T)
0	{}	$\{M, N, O, P, Q, R, S, T\}$	0	∞	∞	∞	∞	∞	8	8
1	{M}	{N, O, P, Q, R, S, T}	0	4	∞	2	∞	5	∞	8
2	{M, P}	$\{N,O,Q,R,S,T\}$	0	4	∞	2	6	5	5	8
3	{M, P, N}	$\{O,Q,R,S,T\}$	0	4	10	2	6	5	5	8
4	{M, P, N, R}	$\{O,Q,S,T\}$	0	4	7	2	6	5	5	6
5	{M, P, N, R, S}	$\{O,Q,T\}$	0	4	7	2	6	5	5	6
6	$\{M, P, N, R, S, Q\}$	{O, T}	0	4	7	2	6	5	5	6
7	{M, P, N, R, S, Q, T}	{O}	0	4	7	2	6	5	5	6

∴Shortest length = 6, Shortest path = $M \rightarrow R \rightarrow T$