


Faculty of engineering (School of computing) Discrete structure (SECI1013-10)

Topic: Assignment 1

Lecture Name: NOR HAIZAN BT MOHAMED RADZI

Names	Matric No
MOHAMMED RAGAB ELSINOUSI	A19EC4053
ABDALHADY	
AHMAD NAZRAN BIN YUSRI	A20EC0179
Abdulhakeem bunzah Usman	A20EC4003

Question 1 $A = \{1,2\} \quad B = \{1,2,3\} \quad C = \{3,4,5,6,7,8\}$ $Y = \{x | x \in R\}$ $W \quad A = \{1,2,3,4,5,6,7,8\}$ $(b) \quad A = \{1,2,3\} \quad (A = \{1,2,3\} \quad (A = \{x \in R | x \in I \text{ or } x \neq 2\} \}$ $(c) \quad A' = \{x \in R | x \in I \text{ or } x \neq 2\}$

a)
$$A \times B = \{ (-1,1), (-1,2), (1,1), (1,2), (2,1), (2,2), (4,1), (4,2) \}$$
b) $S = \{ (1,1), (2,2) \}$

c)
$$T = \{(-1,1), (4,2)\}$$

d) SnT = q1,29

a)
$$S \wedge T = \{1, 2\}$$

e) $S \cup T = \{-1, 1, 2, 4\}$

Answer to question: 4 7 ((7P19) V (7P179)) V (PNO) = (~(~p^q) ~~ (~p^~q)) v (p^2) [: De Morzgan's law] ((PV-9) 1 (PV9)) v (P19) [: De Morzgan's law] v (bvd) P.[: Absorption (aw] [Showed]

	No:Date:
Q5	
<u>a)</u>	R ₁ E C1,1)(1,2)(1,3)(1,4)(1,5)(2,1)(2,2)(2,3)
	(2, u)(3,1)(3,2)(3,3)(4,1)(4,2)(5,1)}
	1 2 3 4 5
	3 1 1 0 0
	5 10 0 0 0
P)	R ₂ E (2,1) (3,1) (4,1) (5,1) (3,2) (4,2) (5,2) (4,3)
	(5,3)(5,u)}
	1 0 0 0 0 0 0
	3 1 1 0 0 0 0
	5 1 1 1 1 0
	Step by Step®

	No: Date:
() s	Samethe main Some of the main diagonal matrix not clement are not I and the matrix is reflexive
	M = 11110 MT 11110 R, 111000 R, 11100 110000 11000 10000 10000
•	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	The product of Boolean shapphat the matric is not transitive. We cas say reflexive Symmetric postenot equivalence relation transitive
	Step by Step®

	No: Date:	
05		
(ا) Some of the main diagonal matrix	plement
	are not I and the matrix is the	irreflexive
	(X, Z) ER, is an antisymmetric velber	cause for
	all(X, =) ER, and XY = Z, then	(\$7,Y) E
	R ₂ .	
	00000 00000 10000 0 10000 0 10000 0 10000 0 10000 0 1 1000 0 1 1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	transitive.	
	We can say reflexive	
	antisymmetric are not transitive	a pattail order.
	Step by Step®	

a)
$$R_1 \cup R_2 = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

b)
$$R_1 \cap R_2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

	No: Date:
<u>.</u>	
QF	Given that f: R -> R,g: R -> R are two one tree one
	functions.
	Suppose &(x) -x+2 and g(x) x+1
	then* (ftg)(x)= f(x) tg(x)
	- (x+2)+(-x+1) = 3, which is a contant
	function.
	There ftg is not one to one function.
W	
100	
-, -,	
	Step by Step®

	No: Date:
<u> </u>	
	Cn = Number of different ways to climb
	a staircase with n stairs.
	When not, the staircase only contains 1 stair
	and thus we can only take the staircase by using
	I stair at time once, which is exactly I way.
	CN-Y
	When n = 2, the staircase only contains 2
	stairs. We can then talle the 2 stairs at one
	or take the stairs one by one, which thus results
	in 2 different ways.
<u> </u>	C 1
	$C_2 = 2$
	When n 23, the staircase contains more than
	2 stairs and thus we will need to use a combination
	of 1 stair and 2 stair steps.
	If the last will be al-stair step, then there were
	and ways to arrive at the previous stairs
	Step by Step®

a)
$$t_1 = t_2 = t_3 = 1$$

 $t_4 = 1 + 1 + 1 = 3$
 $t_5 = 1 + 1 + 3 = 5$
 $t_6 = 1 + 3 + 5 = 9$
 $t_7 = 3 + 5 + 9 = 17$

return
$$f(n-1) + f(n-2) + f(n-3)$$

3