

DISCRETE STRUCTURE SECI1013 20202021/1

GROUP/ASSIGNMENT:

GROUP 12/ASSIGNMENT 1

LECTURER'S NAME:

DR NOR AZIZAH ALI

GROUP MEMBERS:

NAME	MATIRC NO.
HONG PEI GEOK	A20EC0044
KONG JIA ROU	A20EC1098
MAIZATUL AFRINA BINTI SAIFUL AZWAN	A20EC0204
RADIN DAFINA BINTI RADIN ZULKARNAIN	A20EC0135

Table of Contents

Question 1	1
Question 2	2
Question 3	
Question 4	
Question 5	
Question 6	
Question 7	
Question 8	10
Question 9	11

Let the universal set be the set R of all real numbers and let $A=\{x\in R\mid 0\le x\le 2\}$, $B=\{x\in R\mid 1\le x\le 4\}$ and $C=\{x\in R\mid 3\le x\le 9\}$. Find each of the following :

(a) A U C

$$A \cup C = \{x \in \mathbf{R} \mid 0 < x \le 2 \text{ or } 3 \le x < 9\}$$

(b) (A U B)'

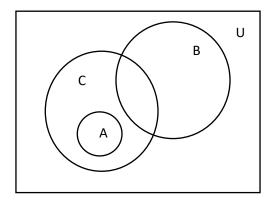
$$(A \cup B)' = \{ x \in \mathbf{R} \mid \neg (0 < x < 4) \} = \{ x \in \mathbf{R} \mid x \le 0 \text{ or } x \ge 4 \}$$

(c) A' U B'

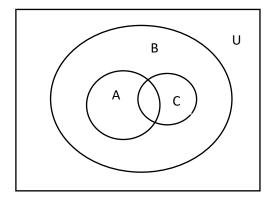
$$A' \cup B' = \{ x \in \mathbf{R} \mid x < 1 \text{ or } x > 2 \}$$

Draw Venn diagrams to describe sets A, B, and C that satisfy the given conditions.

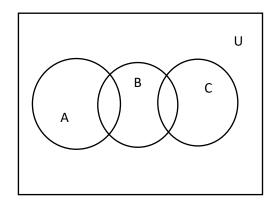
a) A \cap B = \emptyset , A \subseteq C, C \cap B $\neq \emptyset$



b) $A \subseteq B$, $C \subseteq B$, $A \cap C \neq \emptyset$



c) A \cap B \neq \emptyset , B \cap C \neq \emptyset , A \cap C = \emptyset , A $\not\subset$ B, C $\not\subset$ B



Given two relations S and T from A to B,

 $S \cap T = \{(x,y) \in A \times B \mid (x,y) \in S \text{ and } (x,y) \in T\}$

$$S \cup T = \{(x,y) \in A \times B \mid (x,y) \in S \text{ or } (x,y) \in T\}$$

Let $A=\{-1, 1, 2, 4\}$ and $B=\{1,2\}$ and defined binary relations S and T from A to B as follows:

For all $(x,y) \in A \times B$, $x \in S \setminus A \times B = |y|$

For all $(x,y) \in A \times B$, $x \top y \leftrightarrow x - y$ is even

State explicitly which ordered pairs are in A× B, S, T, S ∩ T, and S U T.

$$A = \{-1,1,2,4\}$$
 and $B = \{1,2\}$

$$A \times B = \{(-1,1), (-1,2), (1,1), (1,2), (2,1), (2,2), (4,1), (4,2)\}$$

$$S = \{ (x, y) \in A \times B, x S y \leftrightarrow |x| = |y|$$

Since,

$$(-1,1) \in A \times B$$

$$|-1| = |1|$$

$$(1,1) \in A \times B$$

$$|1| = |1|$$

$$(2,2) \in A \times B$$

$$|2| = |2|$$

$$\therefore S = \{(-1,1), (1,1), (2,2)\}$$

$$T = \{ (x, y) \in A \times B, x T y \leftrightarrow x - y \text{ is even } \}$$

Thus,

$$(-1,1)$$
; $-1-1=-2$ is even

$$(-1,2)$$
; $-1-2 = -3$ is odd

$$(1,1)$$
; $1-1=0$ is even

$$(1,2)$$
; $1-2 = -1$ is odd

$$(2,1)$$
; $2-1=1$ is odd

$$(2,2)$$
; $2-2=0$ is even

$$(4,1)$$
; $4-1=3$ is odd

$$(4,2)$$
; $4-2=2$ is even

$$\therefore T = \{(-1,1), (1,1), (2,2), (4,2)\}$$

$$S \cap T = \{(-1,1), (1,1), (2,2)\}$$

$$S \cup T = \{(-1,1), (1,1), (2,2), (4,2)\}$$

Show that \neg (($\neg p \land q$) \lor ($\neg p \land \neg q$)) \lor ($p \land q$) \equiv p. State carefully which of the laws are used at each stage.

$$\neg ((\neg p \land q) \lor (\neg p \land \neg q)) \lor (p \land q) = \neg (\neg p \land (q \lor \neg q)) \lor (p \land q) \qquad \text{Distributive law}$$

$$= \neg (\neg p \land U) \lor (p \land q) \qquad \text{Complement law}$$

$$= \neg (\neg p) \lor (p \land q) \qquad \text{Properties of universal law}$$

$$= p \lor (p \land q) \qquad \text{Double negation law}$$

$$= p \qquad \text{Absorption law}$$

 $R_1 = \{(x,y) \mid x + y \le 6\}; R_1 \text{ is from X to Y}; R_2 = \{(y,z) \mid y > z\}; R_2 \text{ is from Y to Z}; \text{ ordering of X, Y, and Z: 1, 2, 3, 4, 5. Find:}$

a) The matrix A1 of the relation R1 (relative to the given orderings)

$$M_{A_1} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 2 & 1 & 1 & 1 & 1 & 1 \\ 3 & 4 & 1 & 1 & 1 & 0 \\ 4 & 5 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

b) The matrix A2 of the relation R2 (relative to the given orderings)

$$M_{A_2} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 4 & 1 & 1 & 1 & 0 & 0 \\ 5 & 1 & 1 & 1 & 1 & 0 \end{bmatrix}$$

c) Is R1 reflexive, symmetric, transitive, and/or an equivalence relation?

Reflexive : R_1 is not a reflexive relation because there are value 0 and 1 on its

diagonal and there are only some vertex that have loops.

Symmetric: R_1 is a symmetric relation because $m_{R_1} = m_{R_1}^T$ and $m_{ij} = m_{ji}$.

Transitive : R_1 is not a transitive relation.

Equivalence: R_1 is not an equivalence relation because R_1 is not a reflexive and a

transitive relation.

d) Is R_2 reflexive, antisymmetric, transitive, and/or a partial order relation?

Reflexive : R_2 is not a reflexive relation because there is value 0 on its

diagonal.

Antisymmetric: R_2 is an antisymmetric relation because $m_{ij} \neq m_{ji}$.

Transitive : R_2 is not a transitive relation.

Partial order : R_2 is not a partial order relation because R_2 is not a reflexive relation

and not a transitive relation.

Suppose that the matrix of relation R1 on $\{1, 2, 3\}$ is

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

relative to the ordering 1, 2, 3, and that the matrix of relation R2 on {1, 2, 3} is

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

relative to the ordering 1, 2, 3. Find:

a) The matrix of relation R1 U R2

$$M_{R_1} \cup M_{R_2} = M_{R_1} \vee M_{R_2} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 0 \\ 2 & 0 & 1 & 1 \\ 3 & 1 & 0 & 1 \end{pmatrix}$$

b) The matrix of relation R1 ∩ R2

$$M_{R_1} \cap M_{R_2} = M_{R_1} \wedge M_{R_2} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 1 & 0 & 1 \end{bmatrix}$$

If $f:R \to R$ and $g:R \to R$ are both one-to-one, is f+g also one-to-one? Justify your answer.

A function is said to be one-to one if $f(x_1) = f(x_2)$ and $x_1 = x_2$

Assume that,

$$f(x) = x$$
$$g(x) = -x$$

For all real number for x,

$$(f+g)(x) = f(x) + g(x)$$
$$= (x) + (-x)$$
$$= 0$$

For example,

$$(f+g)(5) = f(5) + g(5)$$

= (5) + (-5)
= 0

$$(f+g)(3) = f(3) + g(3)$$

= (3) + (-3)
= 0

$$(f+g)(5) = (f+g)(3) = 0$$
, but $5 \neq 3$
 $(f+g)(x_1) = (f+g)(x_2) = 0$ but $x_1 \neq x_2$

Therefore,

 $\therefore f + g$ is not one-to-one.

With each step you take when climbing a staircase, you can move up either one stair or two stairs. As a result, you can climb the entire staircase taking one stair at a time, taking two at a time, or taking a combination of one- or two-stair increments. For each integer $n \ge 1$, if the staircase consists of n stairs, let c_n be the number of different ways to climb the staircase.

Find a recurrence relation for c_1 , c_2 , ..., c_n .

$$c_1 = 1$$
,

$$c_2 = 2$$
,

$$\ \ \ \ \ \ \ \ c_n = \ c_{n-1} + c_{n-2} \ \text{, when n} \ge 3$$

The Tribonacci sequence (t_n) is defined by the equations,

$$t_0 = 0$$
, $t_1 = t_2 = 1$, $t_n = t_{n-1} + t_{n-2} + t_{n-3}$ for all $n \ge 3$.

a) Find t_7

```
t_0 = 0
t_1 = 1
t_2 = 1
t_3 = 1 + 1 + 0 = 2
t_4 = 2 + 1 + 1 = 4
t_5 = 4 + 2 + 1 = 7
t_6 = 7 + 4 + 2 = 13
t_7 = 13 + 7 + 4 = 24
\therefore t_7 = 24
```

b) Write a recursive algorithm to compute t_n , $n \ge 3$.

```
Input: n
Output: t(n)

t(n) {
    if (n = 0)
        return 0
    if (n = 1 or n = 2)
        return 1
    return t (n - 1) + t (n - 2) + t (n - 3)
}
```