

UTM
UNIVERSITI TEKNOLOGI MALAYSIA

ASSIGNMENT:- 01

*SCHOOL OF COMPUTING
FACULTY OF ENGINEERING
SUBJECT:-DISCRETE STRUCTURE
SUBJECT CODE:-SECI1013-08*

Group-08

1. Nabil Rayhan-(A20EC9107)
2. Nazmus Sakib-(A20EC4046)
3. Shahariar Showmik-(A20EC9108)

LECTURER:-Dr. Nor Azizah Binti Ali

Section-08

1. Let the universal set be the set R of all real numbers and let $A=\{x \in R \mid 0 < x \leq 2\}$, $B=\{x \in R \mid 1 \leq x < 4\}$ and $C=\{x \in R \mid 3 \leq x < 9\}$. Find each of the following:

a) $A \cup C$

b) $(A \cup B)'$

c) $A' \cup B'$

ANSWER: 01

Given that,

$$U = R = \{\dots, -2, -1, 0, +1, +2, \dots\} \text{ (All real numbers)}$$

$$A = \{x \in R \mid 0 < x \leq 2\}, A = \{1, 2\}$$

$$B = \{x \in R \mid 1 \leq x < 4\}, B = \{1, 2, 3, 4\}$$

$$C = \{x \in R \mid 3 \leq x < 9\}, C = \{3, 4, 5, 6, 7, 8\}$$

$$\begin{aligned} a). \quad A \cup C &= \{1, 2\} \cup \{3, 4, 5, 6, 7, 8\} \\ &= \{1, 2, 3, 4, 5, 6, 7, 8\} \\ &= \{x \in R \mid 0 < x < 9\} \end{aligned}$$

$$\begin{aligned} b). \quad (A \cup B) &= \{1, 2\} \cup \{1, 2, 3\} \\ &= \{1, 2, 3\} \\ (A \cup B)' &= R - (A \cup B) \\ &= R - \{1, 2, 3\} \\ &= \{x \in R \mid 1 > x > 3\} \end{aligned}$$

c). $A' \cup B' = (A \cap B)'$ (DeMorgan's Law)

$$(A \cap B) = \{1,2\}$$

$$(A \cap B)' = R - (A \cap B)$$

$$= R - \{1,2\}$$

$$A' \cup B' = R - \{1,2\}$$

$$= \{x \in R \mid 1 > x > 2\}$$

2. Draw Venn diagrams to describe sets A, B, and C that satisfy the given conditions.

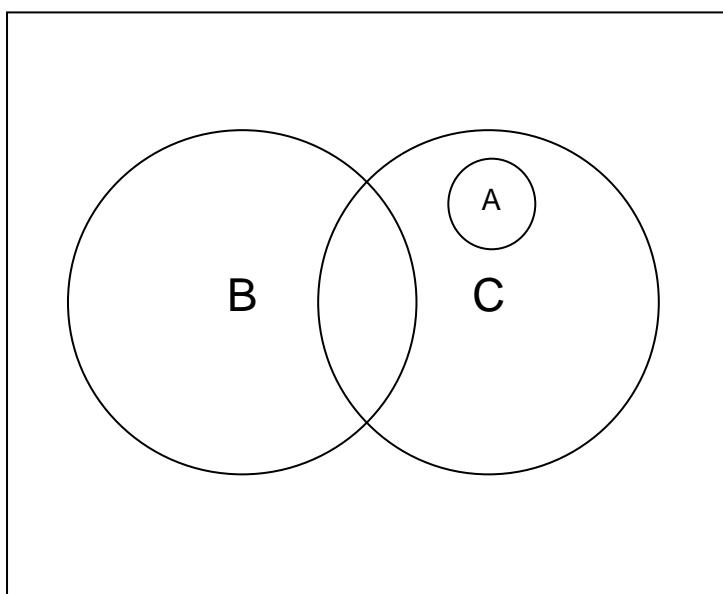
a) $A \cap B = \emptyset, A \subseteq C, C \cap B \neq \emptyset$

b) $A \subseteq B, C \subseteq B, A \cap C \neq \emptyset$

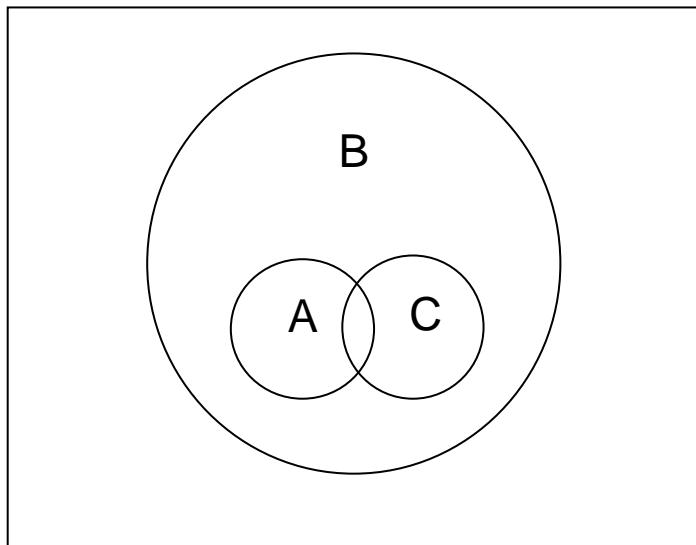
c) $A \cap B \neq \emptyset, B \cap C \neq \emptyset, A \cap C = \emptyset, A \not\subseteq B, C \not\subseteq B$

ANSWER : 02

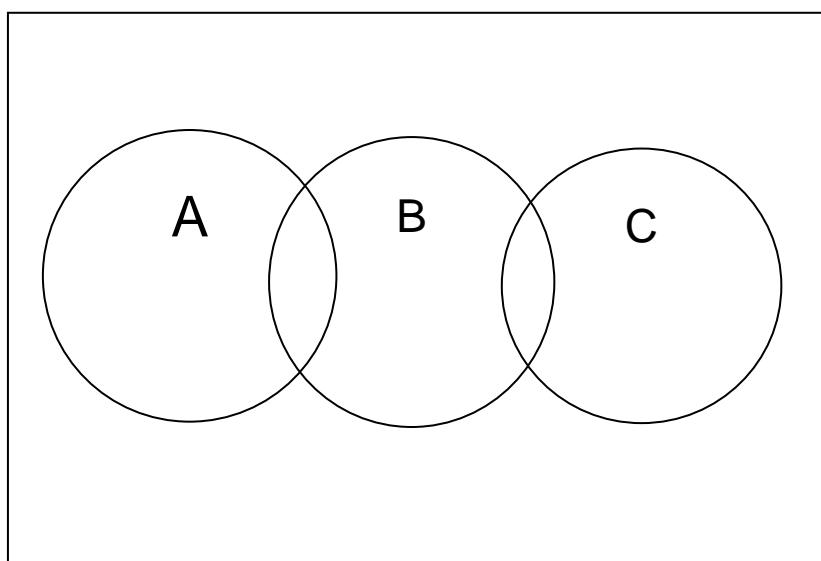
a)



b)



c)



3. Given two relations S and T from A to B, $S \cap T = \{(x,y) \in A \times B \mid (x,y) \in S \text{ and } (x,y) \in T\}$ $S \cup T = \{(x,y) \in A \times B \mid (x,y) \in S \text{ or } (x,y) \in T\}$ Let $A = \{-1, 1, 2, 4\}$ and $B = \{1, 2\}$ and defined binary relations S and T from A to B as follows: For all $(x,y) \in A \times B$, $x \in S y \leftrightarrow |x| = |y|$ For all $(x,y) \in A \times B$, $x \in T y \leftrightarrow x - y \text{ is even}$ State explicitly which ordered pairs are in $A \times B$, S, T, $S \cap T$, and $S \cup T$

ANSWER NO: 03

Part -1

Given that

$$A = \{-1, 1, 2, 4\} \text{ and } B = \{1, 2\}$$

$$A \times B = \{(-1, 1), (-1, 2), (1, 1), (1, 2), (2, 1), (2, 2), (4, 1), (4, 2)\}$$

Part-2

$$\text{For all } (x,y) \in A \times B, x \in S y \leftrightarrow |x| = |y|$$

$$\text{So, } S = \{(-1, 1), (1, 1), (2, 2)\}$$

$$\text{For all } (x,y) \in A \times B, x \in T y \leftrightarrow x - y \text{ is even}$$

$$\text{So, } T = \{(-1, 1), (1, 1), (2, 2), (4, 2)\}$$

Part-3

$$S \cap T = \{(-1, 1), (1, 1), (2, 2)\}$$

AND

$$S \cup T = \{(-1, 1), (1, 1), (2, 2), (4, 2)\}$$

4. Show that $\neg((\neg p \wedge q) \vee (\neg p \wedge \neg q)) \vee (p \wedge q) \equiv p$. State carefully which of the laws are used at each stage.

ANSWER NO: 04

$$\begin{aligned} & \neg((\neg p \wedge q) \vee (\neg p \wedge \neg q)) \vee (p \wedge q) \\ &= ((p \wedge \neg q) \wedge (p \wedge q)) \vee (p \wedge q) \quad [\text{De Morgan's Law}] \\ &= ((p \vee \neg q) \wedge (p \vee q)) \vee (p \wedge q) \quad [\text{De Morgan's Law, Double negation Law}] \\ &= p \vee (\neg q \wedge q) \vee (p \wedge q) \quad [\text{Associative Law}] \\ &= p \vee (p \wedge q) \\ &= p \quad [\text{Absorption Law}] \\ & \text{(showed)} \end{aligned}$$

5. $R_1 = \{(x,y) \mid x+y \leq 6\}$; R_1 is from X to Y ; $R_2 = \{(y,z) \mid y > z\}$; R_2 is from Y to Z ; ordering of X , Y , and Z : 1, 2, 3, 4, 5.

Find:

- The matrix A_1 of the relation R_1 (relative to the given orderings)
- The matrix A_2 of the relation R_2 (relative to the given orderings)
- Is R_1 reflexive, symmetric, transitive, and/or an equivalence relation?
- Is R Answered by : reflexive, antisymmetric, transitive, and/or a partial order relation?

ANSWER NO: 05

a)

$R_1 = \{(x,y) \mid x+y \leq 6\}$; [R_1 is from X to Y]

Therefore,

$R_1 = (1,1), (1,2), (1,3), (1,4), (1,5), (2,1), (2,2), (2,3), (2,4), (3,1), (3,2), (3,3), (4,1), (4,2), (5,1)$

The matrix of $A_1 =$

$$\begin{matrix} & \begin{matrix} 1 & 2 & 3 & 4 & 5 \end{matrix} \\ \begin{matrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{matrix} & \left(\begin{matrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{matrix} \right) \end{matrix}$$

b)

$R2 = \{(y, z) \mid y > z\}$; [R2 is from Y to Z;]

Therefore,

$R2 = (2,1), (3,1), (3,2), (4,1), (4,2), (4,3), (5,1), (5,2), (5,3), (5,4)$

The matrix of A2;

	1	2	3	4	5
1	0	0	0	0	0
2	1	0	0	0	0
3	1	1	0	0	0
4	1	1	1	0	0
5	1	1	1	1	0

c) $R1 = (1,1), (1,2), (1,3), (1,4), (1,5), (2,1), (2,2), (2,3), (2,4), (3,1), (3,2), (3,3), (4,1), (4,2), (5,1)$

$R1$ is not reflexive. The matrix has $(1,1), (2,2), (3,3)$. But it doesn't have $(4,4)$ and $(5,5)$

This matrix is symmetric. Because all the $(a,b) \in R$. $(1,2)$ and $(2,1)$ both \in to R

$(1,3)$ and $(3,1) \in$ to R

$(1,4)$ and $(4,1) \in$ to R

So, $(a,b) \in R$.

The matrix is not transitive. Because we cannot find any $(a,b) \in \mathbf{R} \wedge (b,c) \in \mathbf{R}$ $(a,c) \in \mathbf{R}$.

That is why we cannot relate to this relation to R1.

So we call, it cannot be an equivalent relation.

d)

$R_2 = (2,1), (3,1), (3,2), (4,1), (4,2), (4,3), (5,1), (5,2), (5,3), (5,4)$

R_2 is an irreflexive relation, because in relation there is no $(a,a) \notin \mathbf{R}$.

R_2 is antisymmetric because there is

$(2,1) \in R$ but $(1,2) \notin \mathbf{R}$

$(3,1) \in R$ but $(1,3) \notin \mathbf{R}$

$(3,2) \in R$ but $(2,3) \notin \mathbf{R}$

R_2 is not transitive.

Because there is no $(a,b) \in \mathbf{R} \wedge (b,c) \in \mathbf{R}$ $(a,c) \in \mathbf{R}$ there.

That is why we cannot relate to this relation to R1.

So we call, It is a partial order relation.

**6. Suppose that the matrix of relation R1 on {1, 2, 3} is
 ♦ 1 0 0 0 1 1 1 0 1 ♦ relative to the ordering 1, 2, 3, and that the matrix of
 relation R2 on {1, 2, 3} is ♦ 0 1 0 0 1 0 1 0 1 ♦ relative to the ordering 1, 2,
 3. Find: a) The matrix of relation R1 ∪ R2 b) The matrix of relation R1 ∩ R2**

ANSWER NO: 06

So, We get

$$R_1 = \{(1, 1), (2, 2), (2, 3), (3, 1), (3, 3)\}$$

$$R_2 = \{(1, 2), (2, 2), (3, 1), (3, 3)\}$$

(a)

$$R_1 \cup R_2 = \{(1, 1), (2, 2), (2, 3), (3, 1), (3, 3)\} \cup \{(1, 2), (2, 2), (3, 1), (3, 3)\}$$

$$= \{(1, 1), (1, 2), (2, 2), (2, 3), (3, 1), (3, 3)\}$$

The matrix of relation R₁ ∪ R₂ is=

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

$$(b) R_1 \cap R_2 = \{(1, 1), (2, 2), (2, 3), (3, 1), (3, 3)\} \cap \{(1, 2), (2, 2), (3, 1), (3, 3)\}$$

$$= \{(2, 2), (3, 1), (3, 3)\}$$

The matrix of relation R₁ ∩ R₂ is=

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

7. If $f : R \rightarrow R$ and $g : R \rightarrow R$ are both one-to-one, is $f + g$ also one-to-one? Justify your answer.

ANSWER NO: 07

$$g: \mathbf{R} \rightarrow \mathbf{R} = g(R) = R \dots \dots \text{(ii)}$$

From the question $f + g$ also one to one relation

We know that, for all a_1, a_2 if $f(a_1) = f(a_2)$ then $a_1 = a_2$ after that this will be one to one relation.

So we get from (i+ ii)

$$(f + g)(R) = R + R = 2R \dots\dots\dots (iii)$$

From we know,

Let $(f + g)(R_1) = (f + g)(R_2)$

$$2 R_1 = 2 R_2 \quad [\text{from iii}]$$

$$R_1 = R_2$$

So, we can show that $(f + g)(R)$ is one-to-one.

[Showed]

8. With each step you take when climbing a staircase, you can move up either one stair or two stairs. As a result, you can climb the entire staircase taking one stair at a time, taking two at a time, or taking a combination of one- or two-stair increments. For each integer $n \geq 1$, if the staircase consists of n stairs, let c_n be the number of different ways to climb the staircase. Find a recurrence relation for c_1, c_2, \dots, c_n .

ANSWER NO: 08

Here

So,

Let n = number of total stairs;

c_n =the number of ways to climb “n”

Now,

When $n=1$

Only one way to climb. So $c_1=1$

When, $n=2$

Only two ways to climb. So. $c_2=2$

When , $n \geq 3$

We need combination of one or two stair increments for 1 steps : can climb $(n-1)$ steps

So, it can be done in c_{n-1} ways.

Or by taking 2 steps: can climb $(n-2)$ steps.

So it can be done in c_{n-2} ways.

So now, the required recurrence relation can be formed as:

$$c_n = c_{n-1} + c_{n-2} \text{ when } n \geq 3$$

9. The Tribonacci sequence (t_n) is defined by the equations, $t_1 = t_2 = t_3 = 1$, $t_n = t_{n-1} + t_{n-2} + t_{n-3}$ for all $n \geq 4$. a) Find t_7 . b) Write a recursive algorithm to compute t_n , $n \geq 1$.

ANSWER NO: 09

a)

$$t_1 = t_2 = t_3 = 1, [t_1 = 1, t_2 = 1, t_3 = 1] \text{ and} \\ t_n = t_{n-1} + t_{n-2} + t_{n-3} \quad \text{for all } n \geq 4$$

$$t_1 = t_2 = t_3 = 1 \text{ -1}^{\text{st}} \text{ equation} \\ t_n = t_{n-1} + t_{n-2} + t_{n-3} - 2^{\text{nd}} \text{ equation}$$

So now,

$$t_4 = t(4-1) + t(4-2) + t(4-3) \\ t_4 = t_3 + t_2 + t_1 = 1 + 1 + 1 = 3 \\ t_4 = 3 \\ t_5 = t(5-1) + t(5-2) + t(5-3) = t_4 + t_3 + t_2 = 3 + 1 + 1 = 5 \\ t_5 = 5 \\ t_6 = t(6-1) + t(6-2) + t(6-3) = t_5 + t_4 + t_3 = 5 + 3 + 1 = 9 \\ t_6 = 9 \\ t_7 = t(7-1) + t(7-2) + t(7-3) = t_6 + t_5 + t_4 = 9 + 5 + 3 = 17 \\ t_7 = 17$$

SO, $t_7=17$

b)

```
input : n
Output : tribonacci(n)
tribonacci(n) {
    if ( n =1 )
        Return 1
    else if ( n = 2 )
        Return 1
    else if ( n = 3 )
        Return 1
    else
        Return tribonacci(n-1) + tribonacci(n-2) + tribonacci(n-3)
    }
end if
end
```