

CHAPTER 1

SET THEORY

[Part 1: Set & Subset]

Session 2020/2021 - Semester 1

Sets

 The concept of set is basic to all of mathematics and mathematical applications.

A set is a well-defined collection of distinct objects.

 These objects are called members or elements of the set.

Sets (cont'd)

 Well-defined means that we can tell for certain whether an object is a member of the collection or not.

 If a set is finite and not too large, we can describe it by listing the elements in it.

i) A is a set of all positive integers less than 10:

$$A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

ii) **B** is a set of first 5 positive odd integers:

$$\mathbf{B} = \{1, 3, 5, 7, 9\}$$

iii) **C** is a set of vowels:

$$C = \{a, e, i, o, u\}$$

Defining Sets

This can be done by:

- ✓ Listing ALL elements of the set within braces.
- Listing enough elements to show the pattern then an ellipsis.
- ✓ Use set builder notation to define "rules" for determining membership in the set.

- 1. Listing ALL elements. $A = \{1, 2, 3, 4\}$
- 2. Demonstrating a pattern. $\mathbb{N} = \{1, 2, 3, \ldots\}$
- 3. Using set builder notation. $P = \{x \mid x \in \mathbb{R} \text{ and } x \notin \mathbb{C}\}$

A set is determined by its elements and not by any particular order in which the element might be listed.

Example:

For set $A = \{1, 2, 3, 4\}$, this set might just as well be specified as,

{2, 3, 4, 1} or {4, 1, 3, 2}

The elements making up a set are assumed to be distinct, we may have duplicates in our list, only one occurrence of each element is in the set.

Example:

$$\{a, b, c, a, c\} \longrightarrow \{a, b, c\}$$

$$\{1, 3, 3, 5, 1\} \longrightarrow \{1, 3, 5\}$$

 Use uppercase letters A, B, C ... to denote sets, lowercase denote the elements of set.

- The symbol ∈ stands for 'belongs to'
- The symbol ∉ stands for 'does not belong to'

• $X=\{a,b,c,d,e\}, b \in X \text{ and } m \notin X$

• $A = \{\{1\}, \{2\}, 3, 4\}, \{1\} \in A \text{ and } 1 \not\in A$

 If a set is a large finite set or an infinite set, we can describe it by listing a property necessary for memberships.

Let S be a set, the notation,

$$A = \{x \mid x \in S, P(x)\} \text{ or } A = \{x \in S \mid P(x)\}\$$

means that **A** is the set of all x in **S** such that P of x.

• Let **A**={1, 2, 3, 4, 5, 6}, we can also write **A** as,

$$A = \{x \mid x \in Z, 0 < x < 7\},\$$

if **Z** denotes the set of integers.

• Let $\mathbf{B} = \{x \mid x \in \mathbf{Z}, x > 0\} \rightarrow \mathbf{B} = \{1, 2, 3, 4, ...\}$

Example – Standard definition

```
The set of natural numbers: \mathbb{N} = \{1, 2, 3, \dots\}
The set of integers: \mathbb{Z} = \{ ..., -3, -2, -1, 0, 1, 2, 3, ... \}
The set of positive integers: \mathbb{Z}^+ = \{1, 2, 3, ...\}
```

The set of Rational Numbers (fractions): $\frac{1}{2}$, $\frac{2}{3}$, $\frac{5}{7}$, etc $\in \mathbb{Q}$

More formally: $\mathbb{Q} = \left\{ \frac{a}{b} \middle| a, b \in \mathbb{R}, b \neq 0 \right\}$

The set of Irrational Numbers: $\sqrt{2}$, π , or e are irrational

The Real numbers = \mathbb{R} = the union of the rational numbers with the irrational numbers

Symbols Used With Set Builder Notation

```
The standard form of notation for this is called "set builder notation".
                     \{x \mid x \text{ is an odd positive integer}\}\ represents the set \{1, 3, 5, 7, 9, \ldots\}
  For instance,
       \{x | x \text{ is an odd positive integer}\} is read as
       "the set consisting of all x such that x is an odd positive integer".
      The vertical bar, " | ", stands for "such that"
                       Other "short-hand" notation used in working with sets
          "∀" stands for "for every"
                                                              "3" stands for "there exists"
          "U" stands for "union"
                                                               "\" stands for "intersection"
         "⊆" stands for "is a subset of"
                                                               "⊂" stands for "is a (proper) subset of"
         "∅" stands for the "empty set"
          "∈" stands for "is an element of"
                                                              "∉" stands for "is not an element of"
          "x" stands for "cartesian cross product"
                                                              "=" stands for "is equal to"
```


Subset [_]

 If every element of A is an element of B, we say that **A** is a **subset** of **B** and write $A \subset B$.

In notation: A = B, if $A \subset B$ and $B \subset A$

• The empty set (\emptyset) is a subset of every set.

Let, set $A = \{1, 2, 3\}$

The subset of A are

 \emptyset , {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}

Note: A is a subset of A

Proper Subsets [⊂]

- If $A \subset B$ and B contains an element that is not in A(i.e., A doesn't equal B), than we say "A is a proper subset of B": $A \subset B$ or $B \supset A$
- In notation: $A \subset B$ and $A \neq B$ ($B \not\subset A$)
- Formally: $\mathbf{A} \subseteq \mathbf{B}$ means $\forall x \ [x \in \mathbf{A} \to x \in \mathbf{B}]$
- For all sets: $\mathbf{A} \subseteq \mathbf{A}$

• $A=\{1, 2, 3\}$

The proper subset of A:

$$\emptyset$$
, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}

Note:

A proper subset of a set **A** is a <u>subset</u> of **A** that is not equal to **A**: $\{1,2,3\} \not\subset \mathbf{A}$

Lets, set $\mathbf{B} = \{1, 2, 3, 4, 5, 6\}$ and $\mathbf{A} = \{1, 2, 3\}$

∴ A is a proper subset of B.

Given a set as follows:

$$A = \{a, b, c, d, e, f, g, h\}$$

$$\mathbf{B} = \{b, d, e\}$$

$$C = \{a, b, c, d, e\}$$

$$D = \{r, s, d, e\}$$

Which subset are proper subset of A?

Empty Sets [Ø or { }]

- The empty set \emptyset or $\{\}$ but not $\{\emptyset\}$ is the set without elements.
- Note:
 - ✓ Empty set has no elements.
 - ✓ Empty set is a subset of any set.
 - ✓ There is exactly one empty set.
 - ✓ Properties of empty set:

$$\mathbf{A} \cup \emptyset = \mathbf{A}; \ \mathbf{A} \cap \emptyset = \emptyset$$

 $\mathbf{A} \cap \mathbf{A}' = \emptyset; \ \mathbf{A} \cup \mathbf{A}' = \mathbf{U}$
 $\mathbf{U}' = \emptyset; \ \emptyset' = \mathbf{U}$

- i) $\emptyset = \{x \mid x \text{ is a real number and } x^2 = -3\}$
- ii) $\emptyset = \{x \mid x \text{ is positive integer and } x^3 < 0\}$

Equal Sets [=]

- The set A and B are equal (A = B) if and only if each element of A is an element of B and vice versa.
- Formally: $\mathbf{A} = \mathbf{B}$ means $\forall x [x \in \mathbf{A} \leftrightarrow x \in \mathbf{B}]$

i)
$$A = \{a, b, c\}$$
; $B = \{b, c, a\}$

$$\therefore A = B$$

ii) **C** =
$$\{0, 2, 4, 6, 8\}$$
; **D** = $\{x \mid x \text{ is a positive integer and } 2x < 10\}$

$$C = D$$

Equivalent Set

- Two sets, A and B are equivalent if there exists a one-to-one correspondence between them.
- An equivalent set is simply a set with an equal number of elements.
- Example: Lets A and B be sets.

A =
$$\{a, b, c, d, e\}$$
; **B** = $\{1, 2, 3, 4, 5\}$
 \therefore **A** and **B** are equivalent

Finite Set

A set A is finite if it is empty or if there exists a nonnegative integer n such that A has n elements.

Example: $\mathbf{A} = \{1, 2, 3, ..., n\}$; \mathbf{A} is called a finite set with n elements).

Let, **A** and **B** be sets.

$$A = \{1, 2, 3, 4\};$$

$$\mathbf{B} = \{x \mid x \text{ is an integer, } 1 \le x \le 4\}$$

... A and B are finite set.

Infinite Sets

- A set A is infinite if there is not exists a natural number n such that **A** is equivalent to $\{1, 2, 3, ..., n\}$.
- Infinite set is uncountable.
- Are all infinite sets equivalent?
 - A set is infinite if it is equivalent to a proper subset of itself!.

Lets, **B**, **C** and **D** be sets.

$$\mathbf{C} = \{5, 6, 7, 8, 9, 10\}$$

B =
$$\{x \mid x \text{ is an integer, } 10 < x < 20\}$$

$$\mathbf{D} = \{x \mid x \text{ is an integer, } x > 0\}$$

Z = {
$$x \mid x$$
 is an integer} or **Z** = {..., -3, -2, -1, 0, 1, 2, 3,...}

S =
$$\{x \mid x \text{ is a real number and } 1 \le x \le 4\}$$

 \therefore **C** and **B** are infinite sets; **D**, **Z** and **S** are infinite sets.

Universal Set

 Sometimes we are dealing with sets all of which are subsets of a set **U**.

 This set U is called a universal set or a universe.

 The set U must be explicitly given or inferred from the context.

Universal Set (cont'd)

- Typically we consider a set A as a part of a universal set, U, which consist of all possible elements.
- To be entirely correct we should say,

$$\forall x \in \mathbf{U}[x \in \mathbf{A} \leftrightarrow x \in \mathbf{B}]$$
 instead of $\forall x[x \in \mathbf{A} \leftrightarrow x \in \mathbf{B}]$ for $\mathbf{A} = \mathbf{B}$

Note:

 $\{x \mid 0 < x < 5\}$ is can be ambiguous, compare to $\{x \mid 0 < x < 5, x \in \mathbb{N}\}$ with $\{x | 0 < x < 5, x \in \mathbf{Q}\}$

• The sets $\mathbf{A} = \{1,2,3\}, \mathbf{B} = \{2,4,6,8\} \text{ and } \mathbf{C} = \{5,7\}$

One may choose $U = \{1, 2, 3, 4, 5, 6, 7, 8\}$ as a universal set.

 Any superset of U can also be considered a universal set for these sets A, B, and C.

For example, $\mathbf{U} = \{x \mid x \text{ is a positive integer}\}$

Cardinality of Set

- Let S be a finite set with n distinct elements, where $n \geq 0$.
- Then we write |S| = n and say that the cardinality (or the number of elements) of S is n.
- Example: A and B be sets.

$$A = \{1, 2, 3\} \rightarrow |A| = 3$$

$$B = \{a, b, c, d, e, f, g\} \rightarrow |B| = 7$$

Power Set

• The set of all subsets of a set A, denoted P(A), is called the power set of A.

$$P(\mathbf{A}) = \{x \mid x \subseteq \mathbf{A}\}$$

• If |A| = n, then $|P(A)| = 2^n$

Lets, a set $A = \{1,2,3\}$

- The power set of A, $P(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$
- Notice that |A| = 3, and $|P(A)| = 2^3 = 8$

Summary

How to Think of Sets

The elements of a set do not have an ordering, hence $\{a,b,c\} = \{b,c,a\}$

The elements of a set do not have multitudes, hence $\{a,a,a\} = \{a,a\} = \{a\}$

All that matters is: "Is x an element of A or not?"

The size of A is thus the number of *different* elements.

Exercise # 1

- Determine whether each of these pairs of sets are equal. 1.
 - \emptyset , $\{\emptyset\}$ (b)
 - $\{1, 2, \{2\}\}, \{1, 2\}$ (c)
- For each of the following sets, determine whether 2 is an element of that set. 2.
 - $\{x \in \mathbb{R} \mid x \text{ is an integer greater than } 1\}$ (a)
 - (b) $\{x \in \mathbb{R} \mid x \text{ is the square of an integer}\}$
 - $\{2, \{2\}\}$ (c)
 - (d) {{2}, {2, {2}}}}

Exercise # 2

Determine whether each pair of sets is equal.

- a) {1, 2, 2, 3}; {1, 3, 2}
- b) $\{x \mid x^2 + x = 2\}$; $\{1, -2\}$
- c) $\{x \mid x \text{ is a real number and } 0 < x \le 2\}; \{1,2\}$

Exercise # 3

- Let $X = \{0, 2, a\}$
- Find:
 - a) |**X**|
 - b) Proper subset of X
 - c) Power set of X