
Comparison between Three Cloud Services: Amazon EC2, Microsoft Azure and Google Cloud

Tee Jun Hong¹, Muhammad Faiq Haidar¹, Tay Wei Jian¹, Mohamed Yasser Elrefaey¹,

¹ School of Computing, Faculty of Engineering, Univeriti Teknologi Malaysia 80990 Johor Bahru, Johor

1 Introduction

Cloud computing is combination of new and existing technologies which distributing computing services through connected computers and virtualized machine using internet resulting unified computing resources can be provided [1]. Cloud computing technology using virtualization technology to enable the usage hardware and software resources such as CPU, RAM, and bandwidth in virtual environment [1]. Cloud computing provides advantages such as saving costs and high mobility resulting the usage of cloud computing becoming popular in the recent years. The examples of cloud services are Amazon EC2, Microsoft Azure and Google Cloud.

Fig. 1. According to statistic from Statista, the revenues of Google Cloud in global was doubled from 4,056 million USD in 2017 to 8,918 million USD in 2019 within 2 years [10].

2 Comparative Evaluation

Amazon EC2 is an IaaS. App Engine is Google Cloud's PaaS. With the App Engine, Google takes a large part in managing resources for user necessary. While Microsoft Azure is a PaaS which is like Google App Engine and an IaaS that helps and offers the development of compute, application, and storage services [2].

Table 1. Usefulness of various service models [3]

	Software-as-a-Service (SaaS)						
Service Model		Platform-as-a-Service (PaaS) Google Cloud, Microsoft Azure					
				Infrastructure-as-a-Service (IaaS) AWS, Microsoft Azure			
Utility	Hosted applications	Development tools, database management, business analytics	Operating systems	Storage and servers	Security/networking firewalls	Datacenter physical plant	

Microsoft Azure offers enhanced security, integrated support for Microsoft software, and hybrid cloud capabilities. It has variety of instances including GPU and high-performance compute options, optimization for machine learning like AWS. Google's Compute Engine also offers one f1-micro instance [4].

Table 2. Comparison of instances / VMs [5]

Instance type	AWS Instances	AWS RAM	Azure VMs	Azure RAM	Google VMs	Google RAM
турс	instances	(GiB)	V 1V15	(GiB)		(GiB)
General	m5.xlarge	16	B4MS	16	n1-standard-4	15
purpose						
Compute	c5.xlarge	8	F4s	8	n1-highcpu-4	3.6
optimized			v2			
Memory	r5.xlarge	32	E4 v3	32	n1-highmem-4	26
optimized						
GPU	g3s.4xlarge	30.5	NC 6	56	NVIDIA@Tesla@P4	64

Table 3. The three most common cloud storage options provided [6]

Cloud Storage	Block Storage	Object Storage	File Storage
	Elastic Block Store (Throughput	Simple Storage	Elastic File
AWS	Optimized HHD, General Purpose	Service (Infrequent	Storage.
	SSD, Provisioned IOPS SSD)	Access and Glacier)	
	Persistent Disk (Standard or SSD)	Google Cloud Storage	Open-source
Google Cloud		(GCS Nearline, GCS	FUSE
		coldline)	adapter.
	Managed Disk (Standard and	Hot & Cool with	Azure File
MS Azure	Premium with SSD)	Azure Hot and	Storage
		Storage Blob.	

AWS uses a version of Linux which is adapted to CentOS/RHEL and has minor adjustments to local requirements. As for Azure, it is not a single operating

system, but consists of several different OS working together [11]. While Google Cloud has a Debian 10+ OS.

Amazon has Fortinet which provides security features to Virtual Private Cloud in zones at will. As for Microsoft Azure, Fortinet provides optimized security and removes security outputs during migration. FortiGate provides security and firewalls for Google Cloud Platform [7].

Table 4. Comparison of security provided.

Services	AWS	Azure	Google
Authe n tication &	Identity &	Active Directory	Cloud Identity &
authorization	management		management, Cloud
aumorization			Identity-Aware Proxy
Firewall	Web Application	Application	
rirewaii	Firewall	Gateway	
Protection	Shield	DDoS Protection	
Cloud Services		Service	
Identity	Cognito	Active Directory	
Management		B2C	
Protection with	Key Management	Storage Service	
Data Encryption	Service	Encryption	

Table 5. Comparison of scalability.

Performance	AWS	Google Cloud	Microsoft Azure
Scalability	Highly scalable, high- performance container orchestration service allows to scale applications, group of VMs, or schedule containers on the VMs.	Features from Windows and Linux instances, RESTful APIs, load balancing, data storage and networking, CLI and GUI interfaces and easy scaling.	Highly scalable computing solution with different optimizations with Azure emphasis on hybrid computing, support many OS, Microsoft software and services.

Table 6. Comparison of pricing models [8]

Machine Type	AWS	Azure	Google Cloud Platform
Smallest Instance (2 vCPUs and 8 GB RAM)	US\$69/month	US\$70/month	US\$52/month
Largest Instance	3.84 TB RAM 128 vCPUs US\$3.97/hour	3.89 TB RAM 128 vCPUs US\$6.79/hour	3.75 TB of RAM 160 vCPUs US\$5.32/hour

AWS and Azure offer pay per minute billing while Google Cloud offers payper-second billing models. Google also offers discounts in certain condition.

Table 7. Comparison of auto-scaling provided.

Auto-Scaling	AWS	Google Cloud	Microsoft Azure
	AWS Auto Scaling	Compute Engine	Cloud service that enables
	automatically creates	provides automatic	Azure hosted resources to
Elasticity	all the scaling policies	scaling to add or	be automatically scaled
	based on scaling plans	remove VM instances	according to demand and
	and demands.	based on demands.	set parameters.

Table 8. Comparison of monitoring tools provided [9]

SERVICES	AWS	AZURE	GOOGLE
Burstable VM Types	t4g	В	f1/g1
General Purpose VM types	m6g	Dv4/Dsv4	n2d-standard
Regular Memory Optimized VM types	r6g	Ev4/Esv4	n2d-highmem
Super Memory Optimized VM types	x1/z1d	Mv2	m1-ultramem
Compute Optimized VM types	c6g	Fsv2	c2-standard
High Performance Compute VM types	p3/g4/f1	HBv2/HC	clusters
Storage Optimized VM types	h1/i3/d2	Lsv2	n/a
Container services	ECS	ACI	Compute Engine
Kubernetes services	EKS	AKS	Kubernetes Engine
Serverless containers	Fargate	ACI	Cloud Run
Serverless computing	Lambda	Functions	Cloud Functions

The Lambda service of AWS supports programming language with its Runtime API, which integrates with dozens of AWS services, or with other tools via AWS Lambda Extensions [9].

3 Opinions

One of the advantages of the Amazon EC2 is its ease of use as it provides user-friendly interface. It also provides speed and agility. Amazon EC2 can offers hiring of server in a few minutes only. It can greatly reduce the time taken to complete tasks with tools such as Auto Scaling, AWS Tools and Elastic Load Balancing. Its disadvantage is its networking is not flexible enough compared to other cloud platform resulting cross region communication difficult to setup.

For Microsoft Azure, it provides high data security make it becomes the leader in IaaS security. It allows companies to launch their clients' application in the cloud to save infrastructure and maintenance costs. The cons of this platform are it needs experts to fully utilize the platform. Experts are required to ensure all functions

work correctly. Many mistakes will occur, and costs will be wasted if no expert managing the platform.

Meanwhile, Google Cloud Platform (GCP) provides faster networking speed compared to other cloud platforms as its network using fiber optic cable. GCP costs less as pay-per-second billing model provided, and it also offers discounts to their clients. Unfortunately, GCP still has its limitation at compute services provided and only has Compute engine and Kubernetes engine.

Amazon EC2 is preferred because it is the leading platform in cloud services and provides variety of services tool such as management, web designing and mobile application tools. These tools increase efficiency in software development due to ease of using and greatly reduce the time required. Although Amazon EC2 costs more than the other two, it is still preferred to ensure the quality of software even it costs more.

4 Conclusion

This paper evaluates the comparisons between three major cloud services, Amazon EC2, Microsoft Azure and Google Cloud. These three services have their own advantages and disadvantages over each other, making them preferred by users. However, Amazon EC2 is the best for software development due to its superior quality and efficiency.

References

- Swathi, T., Srikanth, K., Reddy, S.R.: Virtualization in Cloud Computing, International Journal of Computer Science and Mobile Computing (IJCSMC), Vol. 3, Issue. 5 (2014) 540-546
- Azure IaaS. Retrieved from https://www.bitscape.com/it-services/managed-services/azure-iaas/
- 3. What is IaaS? Retrieved from https://azure.microsoft.com/en-in/overview/what-is-iaas/
- Harvey, C., Patrizio, A.: AWS vs. Azure vs. Google: 2021 Cloud Comparison. Retrieved from https://www.datamation.com/cloud-computing/aws-vs-azure-vs-google-cloud-comparison.html
- AWS vs Azure vs Google Cloud: Pricing Comparison of Virtual Machines. Retrieved from https://www.simform.com/compute-pricing-comparison-aws-azure-googlecloud/
- Yudi, W.: Pilihan Cloud Storage AWS vs Azure vs Google Cloud. Retrieved from https://cloudhostingindonesia.com/pilihan-cloud-storage-aws-vs-azure-vs-google-cloud/
- AWS Vs Azure Vs Google Cloud- What is the best cloud platform for your business. Retrieved from https://embee.co.in/blog/aws-vs-azure-vs-google-cloud/
- Laatikainen, G. & Ojala, A. & Mazhelis, O. (2013) Cloud Services Pricing Models. ICSOB 2013. LNBIP. 150.
- A Cloud Services Comparison of the Top Three IaaS Providers. Retrieved from https://www.cloudhealthtech.com/blog/cloud-services-comparison
- Global Google Cloud revenues from 2017 to 2019. Retrieved from https://www.statista.com/statistics/478176/google-public-cloud-revenue/
- 11. The Operating Systems of Windows Azure. Retrieved from https://www.red-gate.com/simple-talk/cloud/cloud-development/the-operating-systems-of-windows-azure/