

School of Computing Faculty of Engineering UNIVERSITI TEKNOLOGI MALAYSIA

SUBJECT : SECR1013 DIGITAL LOGIC

SESSION/SEM : 2020/2021 Sem 1

LAB 3 : SYNCHRONOUS DIGITAL COUNTER

NAME : Amir Iskandar Bin Norkhairulazaddin A20EC0011

Iman Ehsan Bin Hassan A20EC0048

DATE : 22/1/2021

Lab #3

Identifying the Properties of a Synchronous Counter

A. Aims

- 1) Expose the student with experience on constructing synchronous counter circuit using Flip-Flop IC, Basic Gate ICs, Breadboard and ETS-5000 Digital Kit.
- 2) Promote critical thinking among students by analysing the given circuit and identifying the behaviour of the digital circuit.

B. Objectives

The objectives of this lab activity are to:

- 1) Implement a synchronous counter circuit into physical circuit using Breadboard, Flip-Flops, Basic Gates and Switches.
- 2) Completing the next-state table of the counter circuit.
- 3) Sketch the state diagram of the counter circuit.
- 4) Identify the properties of the counter.

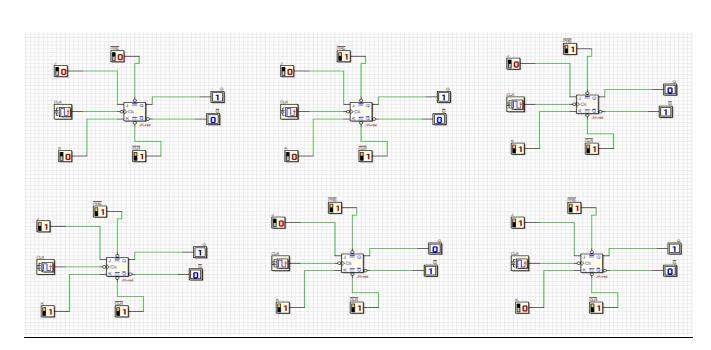
C. Materials And Equipment

Materials and equipment required for this lab are as follows:

Item Name	Number of Item
1. Breadboard	1
2. 7408 Quad 2-Input AND	1
3. 7404 Hex Inverter	1
4. 7432 Quad 2-input OR	1
5. 7476 Dual J-K Flip Flop	1
6. ETS-5000 Digital Kit	1

D. Preliminary Works

1) Determine the logic level for each input combinations in Table 1 so that the desired result can be realized.


Table 1

Desired Result	PRE	SET	J	K	CLK	Q
Set initial value Q = 1	0	1	X	X		1
Output Q stays the same	1	1	0	0	1	1
Output Q become 0, no change in asynchronous input	1	1	0	1	\	0
Output Q is not the previous Q	1	1	1	1	1	1
RESET Q	1	1	0	1	1	0
SET Q	1	1	1	0	1	1

- 2) Answer all questions.
- a) Which state that JK flip-flop has, but not on SR flip-flop.

b) Identify whether the JK flip flop in 7476, is a positive-edge triggered or negative-edge triggered flip flop.

<u>It is a negative-edge triggered because the clock only triggered when the arrow</u> goes down which indicate it is negative edge.

E. Lab Activities

1) You are given a counter circuit as shown in Figure 4.

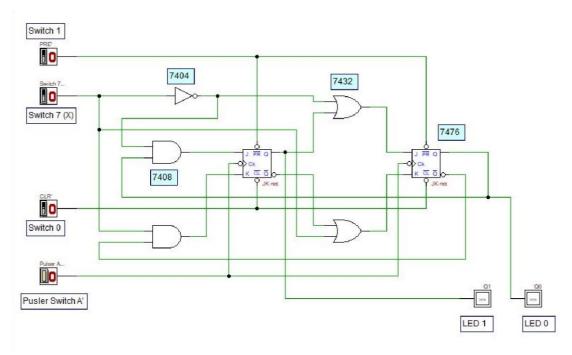
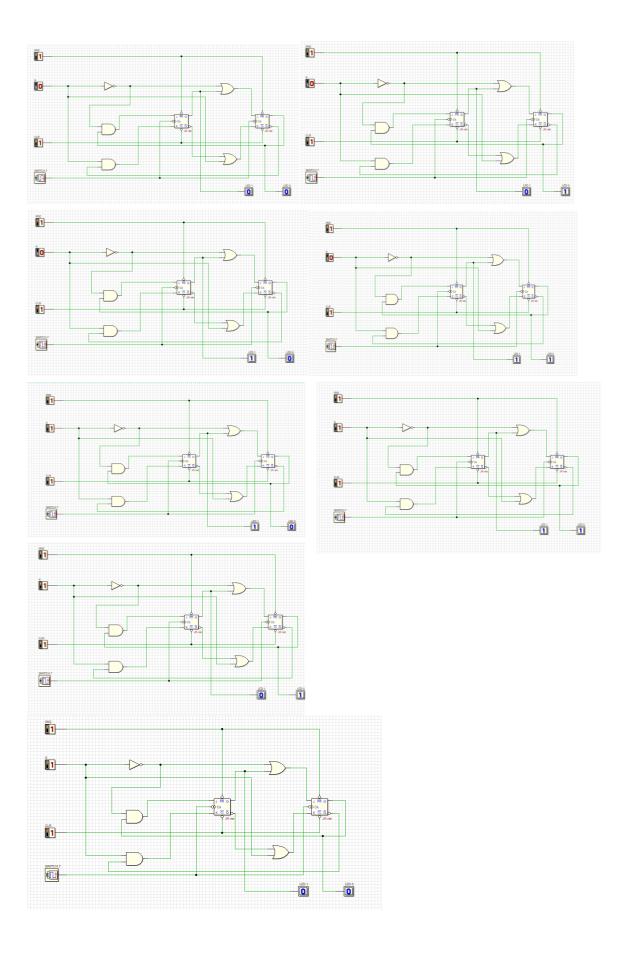



Figure 4: A Synchronous Counter Circuit

- 2) By using all materials and equipment's listed in section C, construct the physical circuit of Figure 4. (Make sure all ICs are connected to Vcc and GND).
- 3) Investigate the behaviour of the counter by observing the next state of the counter for all combination of *Present State* and *X* values. Complete the *NextState* table of the counter in Table 2. Ensure the Switch 0 is in HIGH state. (0=LOW, 1=HIGH)

Table 2

Switch 7	Pı	resent State	Ne	xt State
X	Q1 LED 1	Q0 LED 0	Q1 LED 1	Q0 LED 0
0	0	0	0	1
0	0	1	1	0
0	1	0	1	1
0	1	1	1	1
1	0	0	0	0
1	0	1	0	0
1	1	0	0	1
1	1	1	1	0

4) By referring to the *Next-State* in Table 2, sketch the state diagram of the counter.

- 5) By referring to the *Next-State* in Table 2 and the state diagram in (4), answer all questions.
 - a) What is the main indicator to decide that the counter is a synchronous counter?

The clock input is taken from one source which is Pulser Switch A and does not use the output of the flip flop as the clock input.

b) How many states are available for the counter and what are they?

4 states which are 00,01,10 and 11

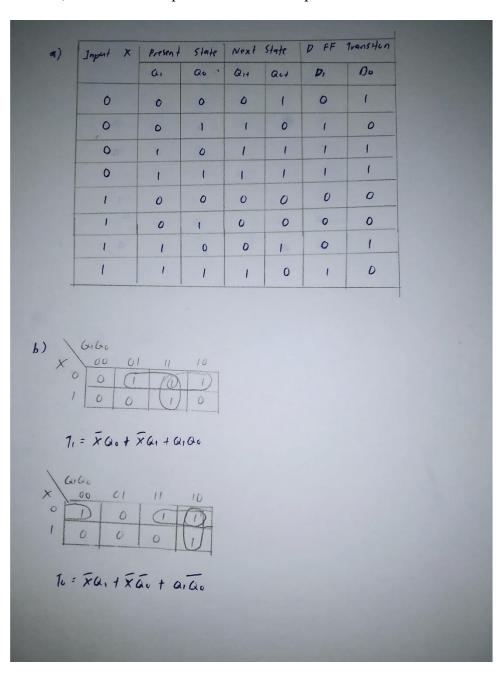
c) What is the function of Switch 7 (X) in the circuit?

Switch X act as the input which determine the counting sequence whether it will count up or counting down.

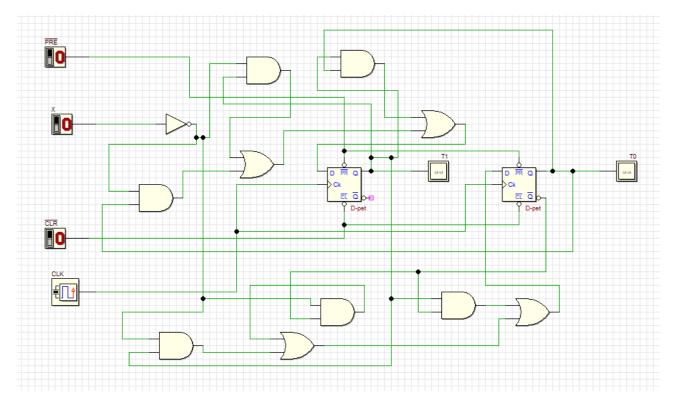
d) What is the function of Switch 0 and Switch 1 in the circuit?

Switch 0 and Switch 1 acts as the asynchronous input which control PRE and CLR state.

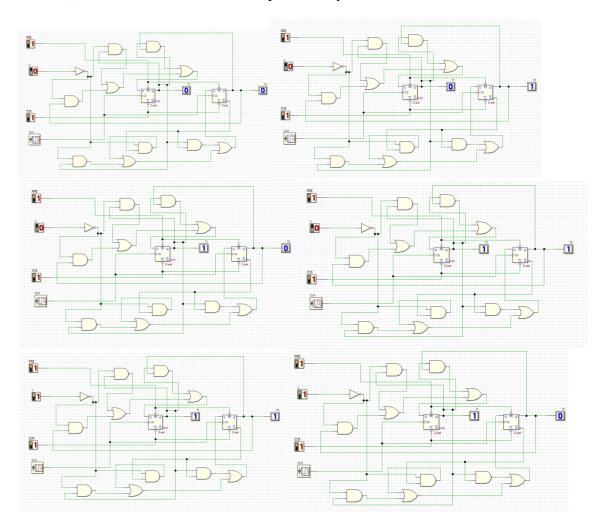
e) Is the counter a saturated counter or recycle counter?


It is a saturated counter because it will stop and maintain when it reaches a certain value and does not come back to the initial state.

- 6) Referring to state diagram in 4, draw and built a synchronous counter using D flip-flop.
 - a) Built the next state and transition table using the header in Table 3


Table 3

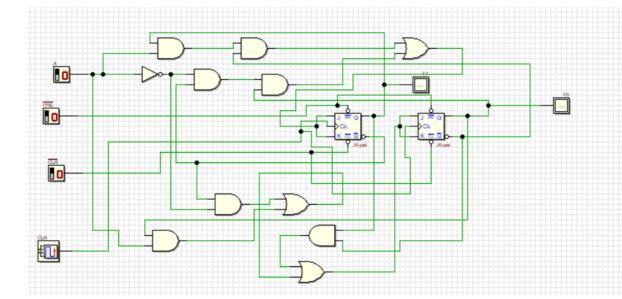
Input	Present State		Next State		D FF Transition	
X	Q1	Q0	Q1+	Q0+	D1	D0


b) Get the optimized Boolean expression.

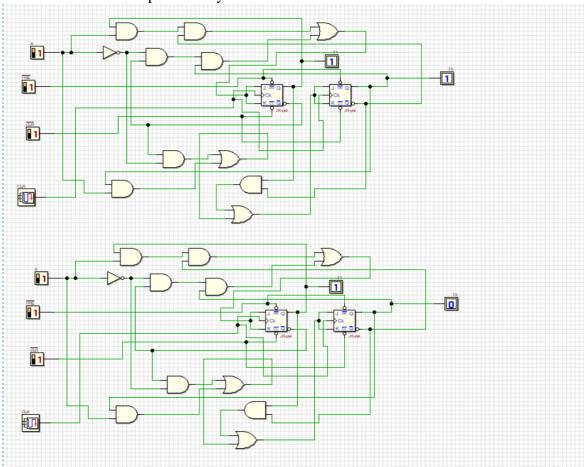
c) Draw the complete final circuit design in Deeds.

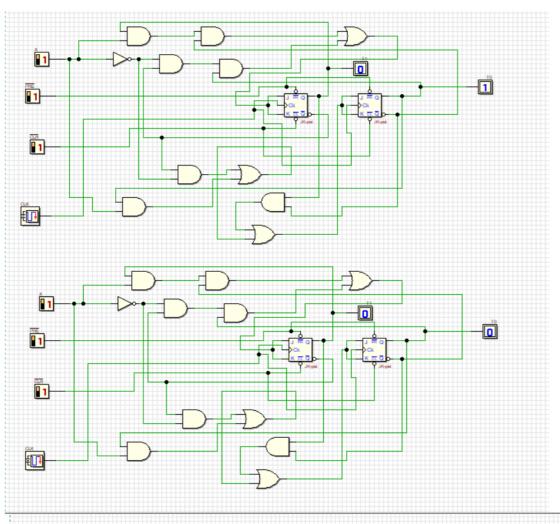
d) Simulate the circuit to prove that your Table 3 is correct.

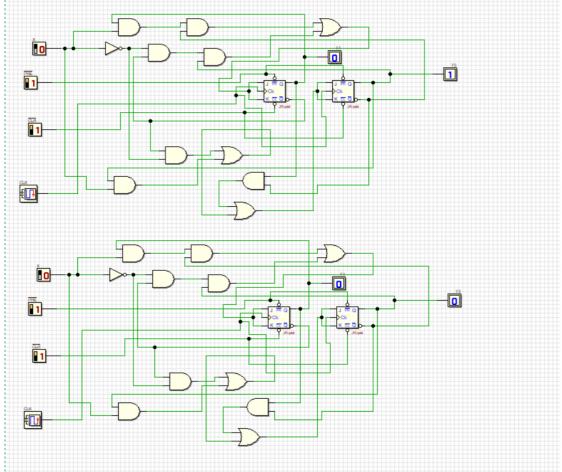
- 7) Repeat steps in Q(6) using T flip-flop.
 - a) Built the next state and transition table using the header in Table 4

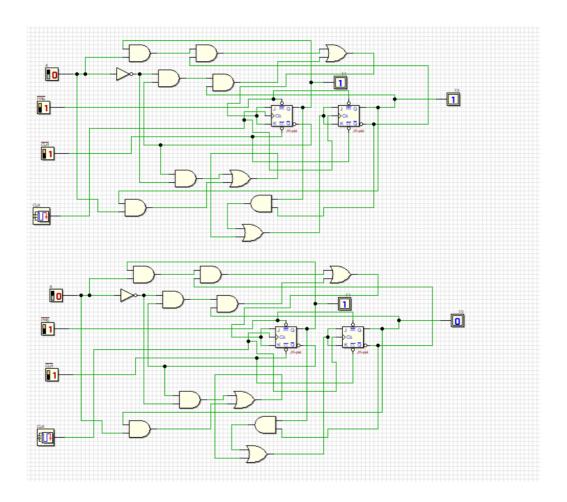

Table 4

Input	Present S	tate	Next S	tate	T FF Tra	nsition
X	Q1	Q0	Q1+	Q0+	T1	T0


b) Get the optimized Boolean expression.


7) a) Input X		Present State		Next State		TFF Teasite	
+		QI	Qo	Q1+	Qot	Tı	To.
-	0	0	0	0	1	0	1
-	0	0	1	1	0	1	1
-	0		0	1	1	0	
-	0	1		1	1	6	0
-		0	0	0	0	6	0
+	1	0	1	0	0	0	
	1	1	0	0	1	1	1
L			(0	0	1
10							
T3 Q,Q00			₹0, -	+ X Q	-Q, Q.		


c) Draw the complete final circuit design in Deeds.



d) Simulate the circuit to prove that your Table 4 is correct.

