

School of Computing Faculty of Engineering UNIVERSITI TEKNOLOGI MALAYSIA

SUBJECT : SECR1013 DIGITAL LOGIC

SESSION/SEM : <u>2021/1</u>

LAB 3 : SYNCHRONOUSDIGITAL COUNTER

NAME : <u>CHLOE RACQUELMAE KENNEDY</u>

DATE : <u>26/1/2021</u>

Lab #3

Identifying the Properties of a Synchronous Counter

A. Aims

- 1) Expose the student with experience on constructing synchronous counter circuit using Flip-Flop IC, Basic Gate ICs, Breadboard and ETS-5000 Digital Kit.
- 2) Promote critical thinking among students by analysing the given circuit and identifying the behaviour of the digital circuit.

B. Objectives

- 1) Implement a synchronous counter circuit into physical circuit using Breadboard, Flip-Flops, Basic Gates and Switches.
- 2) Completing the next-state table of the counter circuit.
- 3) Sketch the state diagram of the counter circuit.
- 4) Identify the properties of the counter.

C. Materials And Equipment

Materials and equipment required for this lab are as follows:

Item Name	Number of Item
1. Breadboard	1
2.7408 Quad 2-Input AND	1
3.7404 Hex Inverter	1
4.7432 Quad 2-input OR	1
5.7476 Dual J-K Flip Flop	1
6. ETS-5000 Digital Kit	1

D. Preliminary Works

1) Determine the logic level for each input combinations in Table 1 so that the desired result can be realized.

Table 1								
Desired Result	PRE	CLR	J	K	CLK	Q		
Set initial value Q = 1	0	1	X	X		1		
Output Q stays the same	1	1	0	0	₩	1		
Output Q become 0, no change in asynchronous input	1	1	0	1	₩	0		
Output Q is not the previous Q	1	1	1	1	U	1		
RESET Q	1	1	0	1	↓	0		
SET Q	1	1	1	0	↓	1		

- 2) Answer all questions.
- a) Which state that JK flip-flop has, but not on SR flip-flop.

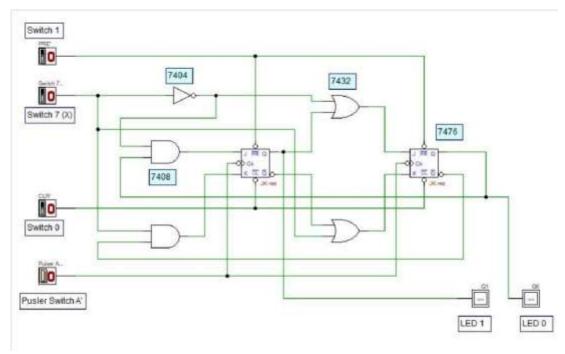
When both inputs are equal to 1, JK flip-flop will be in toggle state while when both inputs are equal to 1, SR flip-flop will be invalid state.

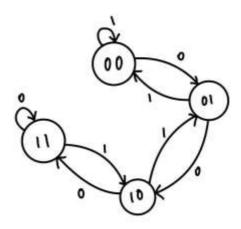
b) Identify whether the JK flip flop in 7476, is a positive-edge triggered or negative-edge triggered flip flop.

Negative-edge triggered flip flop.

E. Lab Activities

1) You are given a counter circuit as shown in Figure 4.




Figure 4: A Synchronous Counter Circuit

- 2) By using all materials and equipment's listed in section C, construct the physical circuit of Figure 4. (Make sure all ICs are connected to Vcc and GND).
- 3) Investigate the behaviour of the counter by observing the next state of the counter for all combination of *Present State* and *X* values. Complete the *NextState* table of the counter in Table 2. Ensure the Switch 0 is in HIGH state. (0=LOW, 1=HIGH)

Table 2

Switch 7	Pr	Present State Ne		xt State
X	Q1	Q0	Q1	Q0
Λ	LED 1	LED 0	LED 1	LED 0
0	0	0	0	1
0	0	1	1	0
0	1	0	1	1
0	1	1	1	1
1	0	0	0	0
1	0	1	0	0
1	1	0	0	1
1	1	1	1	0

4) By referring to the *Next-State* in Table 2, sketch the state diagram of the counter.

- 5) By referring to the *Next-State* in Table 2 and the state diagram in (4), answer all questions.
 - a) What is the main indicator to decide that the counter is a synchronous counter?
 The counter is a synchronous counter when both the value of PRE' and CLR' are equal to 1.
 - b) How many states are available for the counter and what are they?
 4 states which are 00, 01, 10, 11.
 - c) What is the function of Switch 7 (X) in the circuit?

The function of Switch 7 (X) is to indicate direction of counter either counter up or counter down.

- d) What is the function of Switch 0 and Switch 1 in the circuit?
 - Switch 0 (CLR') is used to reset the output to 0 while switch 1 (PRE') is used to set the initial value of 1 to the output.
- e) Is the counter a saturated counter or recycle counter?

Saturated counter.

- 6) Referring to state diagram in 4, draw and built a synchronous counter using D flip-flop.
 - a) Built the next state and transition table using the header in Table 3

 Table 3

Input	Presen	Present State Next State		D FF Transition		
X	Q1	Q0	Q1+	Q0+	D1	D0
0	0	0	0	1	0	1
0	0	1	1	0	1	0
0	1	0	1	1	1	1
0	1	1	1	1	1	1
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	0	1	0	1
1	1	1	1	0	1	0

b) Get the optimized Boolean expression.

DO:

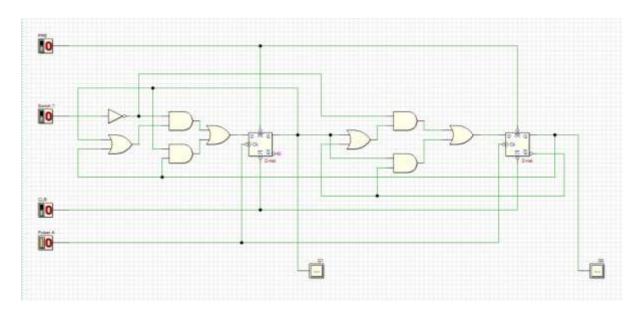
Q1 Q0				
X	00	01	11	10
0	1	0	1	1
1	0	0	0	1

$$D0 = X'Q1'Q0' + X'Q1Q0' + X'Q1Q0 + XQ1Q0'$$

$$D0 = X'Q0' + X'Q1 + Q1Q0'$$

$$D0 = X'(Q0' + Q1) + Q1Q0'$$

D1:


<i>υ</i> 1.				
Q1 Q0				
X	00	01	11	10
0	0	<mark>1</mark>	1	<mark>1</mark>
1	0	0	1	0

$$D1 = XQ1Q0 + X'Q1Q0 + X'Q1'Q0 + X'Q1Q0'$$

$$D1 = X'Q0 + X'Q1 + Q1Q0$$

$$D1 = X'(Q0 + Q1) + Q1Q0$$

c) Draw the complete final circuit design in Deeds.

d) Simulate the circuit to prove that your Table 3 is correct.

Input	Presen	Present State		Next State		ansition
X	Q1	Q0	Q1+	Q0+	D1	D0
0	0	0	0	1	0	1
0	0	1	1	0	1	0
0	1	0	1	1	1	1
0	1	1	1	1	1	1
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	0	1	0	1
1	1	1	1	0	1	0

The table above is the stimulation of circuit which proves that my Table 3 is correct as the results are the same.

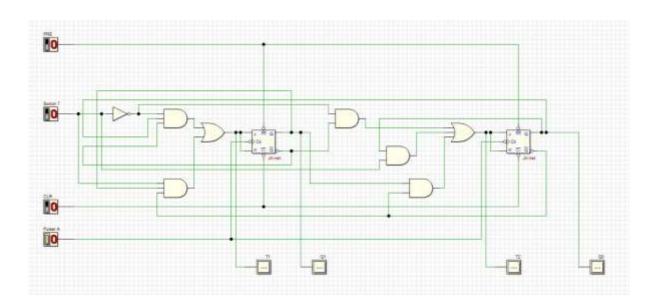
7) Repeat steps in Q(6) using T flip-flop.

Input Present State		Present State Next State		T FF Transition		
X	Q1	Q0	Q1+	Q0+	T1	T0
0	0	0	0	1	0	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	0	0
1	0	0	0	0	0	0
1	0	1	0	0	0	1
1	1	0	0	1	1	1
1	1	1	1	0	0	1

TO:

Q1 Q0				
X	00	01	11	10
0	1	1	0	1
1	0	1	1	1

000, 001 = X'Q1' 101, 111 = XQ0 010, 110 = Q1Q0'


$$T0 = X'Q1'Q0' + X'Q1'Q0 + X'Q1Q0' + XQ1'Q0 + XQ1Q0' + XQ1Q0$$

 $\underline{T0} = X'Q1' + XQ0 + Q1Q0'$

T1:

Q1 Q0				
X	00	01	11	10
0	0	1	0	0
1	0	0	0	1

 $\underline{T1 = X'Q1'Q0 + XQ1Q0'}$

Input	Input Present State		esent State Next State		Present State Next St		T FF	Fransition
X	Q1	Q0	Q1+	Q0+	T1	T0		
0	0	0	0	1	0	1		
0	0	1	1	0	1	1		
0	1	0	1	1	0	1		
0	1	1	1	1	0	0		
1	0	0	0	0	0	0		
1	0	1	0	0	0	1		
1	1	0	0	1	1	1		
1	1	1	1	0	0	1		

The table above is the stimulation of circuit which proves that both of my table have the same result and the table is correct.