COMPUTER CHESS

CHESS HIERARCHY MEMORY

MUHAMMAD AMIRUDDIN BIN ZULKIFLI

School of Computing
University of Technology Malaysia
amiruanl2@gmail.com

Abstract—In this paper , I introduce how the CHESS computer
memories work. CHESS is a distributed memory multiprocessor
based on a grid topology. Processors and memories alternate on
both directions of the grid to form a processing surface on which
parallel programs are mapped. Memories are used for
communication, to reduce the communication overhead, as well as
for storing programs for execution This paper also will present a
move-ordering algorithm that tend to mimic something of the
human thought process when choosing chess moves.

Keywords-component; Richard Greenblatt;
multiprocessors; CHESS hierarchy memory

processors;

I. INRODUCTION

Modern computers have the power to follow generalized sets of
operations, called programs. These programs enable computers
to perform an extremely wide range of tasks. Many existing
computers today utilized the power of more than one CPU to
provide better cost-performance than a single CPU or a
supercomputer. These computers named "multis" by Gordon
Bell [5] are mostly based on the shared bus - shared memory
model, where several processors are connected to a shared
memory module through a shared bus. Sequent, Firefly and the
Encore are one of the examples of these machines.

These computers are easy to program and supply significant
speed-ups thanks to its shared memory. .However, the cons that
also intact, is that the limited bandwidth of the shared bus which
restricts the amount of processors within the system which will
be connected to an equivalent memory, and thus the
performance of the system. To unravel this problem we will
increase the speed of the bus [11], which isn't always easy due
to technology limitations, or we will use more wires to attach to
the memory. For a given technology, more wires provide more
bandwidth, but it's not obvious which is that the best way to
connect the wires due to complications like caches, code
sharing and system complexity. Distributed memory
architectures promise a far better capacity to be changed in size
or scale, but it's harder to program efficiently. In [1] an
architecture called CHESS was suggests which mixes the
simplest of both worlds: that's , it's a distributed memory
architecture, which is programmed consistent with the shared
memory ideas.

Need to be mention that in this paper, I will simplified the
Memory Hierarchy of the CHESS architecture which have been
a successful research by D. Lioupis, N. Kanellopoulos and M.
Stefanidakis in 1993 [9].

II. THE ‘CHESS’ HISTORY

From 1955 to 1958 the first actual computer chess programs
appeared. In [1], there were three programs which corresponded
exactly to the three categories that have been specified.
Unfortunately, all three of these programs played very mediocre
chess, for reasons that are now quite clear, but were hard to
appreciate at that time. Because of this lack of success,
computer chess was for a time thought to be too difficult to
tackle effectively, although an isolated Batchelor's thesis was
produced by Kotok 2 at MIT under the direction of John
McCarthy.

In 1966, Richard Greenblatt [6] from MIT paved the way for
his revolutionary efforts in computer chess. He wrote the first
program that could command like an actual player. This
program was good and far more better than any of its
predecessors had. MacHack-6 (as Greenblatt's program was
named) soon played in human tournaments, established a
performance rating in the 1400-1500 USCF range (Class "C")
and showed that this program capable of beating tournament
caliber players. Its achievements spawned a broadside of efforts
all over the world. Since 1970 there have been annual U.S.
Computer Chess Championships (held concurrently with the
ACM annual meetings), and a World Computer Championship
series was begun at IFIPS in Stockholm 1974.

Unfortunately, Greenblatt, who started it all, could not be
enter his program in any of these events. During this period, the
Northwestern University chess program, programmed by David
Slate and Larry Atkin, and variously named CHESS, that also
evolve inti CHESS 3.0 to CHESS 4.2 dominated the chess
scene. It won every U.S. Computer Championship except the
1974 event. Years after years improvising the program , the fall
of 1975, CHESS 4.4, the latest incarnation of the powerful
Northwestern University Chess program, again won the U.S.
Computer Championship.

III. CHESS ARCHITECTURE

3.1 Rationale

In order to achieve high performance when executing
parallel programs in a parallel architecture, a minimum
communication time must be kept. Communication is used to
transfer work to other processors and synchronize operations in
different processors. In shared memory architectures,
communication between processors is performed through the
memory while, in distributed memory architectures,
communication is based on message passing.

It is important to note that when a processor is assigned a
work granule, the appropriate code must be tranferred to its
memory if it is not already there. It is therefore advantageous to
store the code directly in the memory rather than passing it
through a communication network. CHESS achieves this by
using the memory as a communication media..

3.2 Logical Model

Figure 1. CHESS Computer Architecture

Figure 1, show the CHESS architecture which is a partially
shared, distributed memory architecture. Each processor (P) is
connected to four memories and each memory to four
processors. The grid that is formed by such an interconnection
is wrapped around in both directions which can be expanded in
either direction by connecting more memories and processors.
The architecture, therefore, can support large number of
processors (>100) which can execute parallel programs.

3.3 Execution model

The execution model of CHESS is predicted on the idea of
mapping the execution tree of a parallel program onto a grid of
processors. One processor is assigned the root of the tree (which
is the whole program) and spreads out the work to its
neighbours until the program is executed. The rules that
monetized this map is the diffusion algorithm and the
programming model.

The diffusion algorithm determines where and when the
work are going to be assigned. Its effort is to specialized
balancing the load on the processor grid so as to extend the
efficiency. Therefore, it plan to distribute the work as many as
possible while putting communication cost at its lowest. The
detailed description of this algorithm isn’t adressed in this paper
but we will assume that the OS running on CHESS includes
such an algorithm. Algorithms similar to those utilized in [2],
can be used

Spreading out work consists of copying a work granule into

a processor's memory. A work granule is a self contained piece
of work 50-500 lines of code. Each granule consists of :

(a) a header which indicates the needed resources for the
execution of work and

(b) a body that contains the code to be executed.
A granule is assigned to a processor consistent with the data
dependencies and the processor's load.

Workload queues in

neighbouring

Figure 2
Memory Modules

Figure 2 shows a processor's work queues. Due to the
topology of CHESS there are four work queues for each
processor, one for each neighbouring memory. QN is the north
queue in the north memory module (MN). When a work granule

is assigned to this processor, a pointer is set in its work queue.
The processor services each job in turn from its work queue.

Each memory module also contains another set of four
queues which are used to buffer through traffic generated by
processor communication. The OS assigns higher priority to
these queues enabling other waiting processors to continue their
work.

Let us assume that the processor north of P wants to assign
some work to processor P. The code associated with this work
is then copied by this processor in MN and a pointer to this code
in QN. Processor P periodically scans the work queues and
executes any remaining work. This operation is supervised by
the OS which ensures correct operation. In order to simplify the
architecture, the OS code is also executed by the processors.

3.4 Physical Implementation

FH T |
T

. OH
GH CH
[:H

i}

gy [
ol o o el /

288

L

2 e)

Figure 3 . CHESS Physical Bus Interconnection Tile

Since a memory connects to four processors, the four
ports of this memory are implemented using four caches ($)
interconnected to a memory bus (M-bus) as can be seen in
figure 3 (M 1 memory bus). The four processors, four memories
and bus network (P-buses and M-buses) define a CHESS
physical tile. The first and third M-bus as well as the second
and fourth P-bus are shifted by two places in order to form the
required grid interconnection. The lines at the end of the split
buses indicate connectors (CNI, CEIl, etc). the smallest
configuration possible which is 4 processors and 4 memories,
is formed by connecting together the north connector with the
south and therefore the east with the west.

D. Lioupis et al

E

5 [

ezc
SR

ﬁ

*HITI

Figure 4 . A CHESS Memory Cluster

IV. MEMORY HIERARCHY

Basically, the memory hierarchy of CHESS computer are so
near to resembles the memory hierarchy of shared bus
multiprocessors. Figure 4 shows a memory cluster which is
when a processor connected to its four neighbouring memories
that in turn are connected to their neighbouring processors
(eight processors all together). The boundaries of the memory
cluster are the eight surrounding processors (boarder
processors) which are shared by the neighbouring clusters. To
increase the bandwidth to memory, we use a multiple bus
architecture. The resulting architecture uses a grid of buses with
a cache at each cross-point to attach to memory.

Each memory is split into pages. For each page, it is swapped
to the disc when a memory module becomes full.The disc
controller is connected to the central processor P-bus of a
memory cluster, which controls the paging of its four
neighbouring memory modules. This suggests that only one disc
is required per four memory modules which is consistent with
the physical implementation described. For an instant, in figure
3 shown the physical tile where the disc controller can be
connected to the P2 processor, which connects to all four
memories of this particular tile.

There are two typical operations within the CHESS
architecture concerning to the memory. The information been
safely transferred in this traffic because is it marked as non-
cacheable.

a) Memory-to-memory transfer within cluster:
this operation can be performed directly either by the
processor located in the center of the cluster, or by a processor
common to both memories

b) Intercluster memory-to-memory transfers:

this operation can be performed directly if there is a
processor common to both memories (i.e. a border processor),
otherwise, the transfer will be routed through the shortest route.

Using memory as a buffer for communication simplifies the
architecture design in the expense of increased traffic on the bus
network. Since there are only four processors on the M-bus we
expect that memory buses will not be heavily loaded. The cache
write back replacement strategy employed will further reduce
this load.

V. MEMORY CONSISTENCY

How great and impactful the programming model and memory
hierarchy of CHESS shown when it can allow multiple copies
of an equivalent variable to exist in the system so as to extend
performance and reduce hot spots. Since any processor can
update this variable at any time, the architecture must provide a
mechanism to ensure global data consistency. A program being
executed on CHESS contains private and shared data. The local
variables and constants of a procedure are the private data
which reside together with the code in the same memory
module. There is no consistency problem with these variables.
Shared data on the other hand are global variables accessed by
more than one procedure. These procedures can be executed by
different processors, all of which need access to the variables.
According to how far away these processors are, consistency
will be maintained by two protocols:

1. Neighbouring processors which share data through a
common memory module are connected on a shared bus
through a cache. These caches employ a simple bus snooping
consistency protocol like those described in [3] in order to
maintain consistency as described in section 5.1.

2. If a processor needs to access a shared variable which does
not reside in its memory, it forwards a requesting message to a
processor neighbouring the memory module which holds this
shared variable. The reply message contains the data including
all the required information to implement a weak order
consistency protocol called "freeze" consistency protocol
which is described in section 5.2.

5.1 Snooping Cache Consist

Due to the inconsistency occurs in the cacheswithin the first
level of the implementation of CHESS, any cache attached to a
memory can request a copy of a variable. Since these caches are
connected to a common bus, standard bus snooping protocols
can be used to maintain consistency. Shared data, however,
generates some inconsistencies which are handled by the
snooping protocol. With the introduction of multis a lot of

research effort was directed in the area of cache consistency on
a shared bus. In the CHESS architecture, due to the small
number of processors connected on the same bus there is no
great strain on the bus and consequently no strain on the
snooping protocol. Since we plan to use off-the-self
components we will adopt the snooping protocol implemented
in the cache used. We consider that a protocol similar to the one
implemented by the SPARC cache controller is adequate for
CHESS.

4.2 Freeze Consistency Protocol

While memory modules are consistent with their caches,
memories must remain consistent with each other since copies
of shared data are allowed to exist in different memory
modules. In maintaining memory module consistency, CHESS
operates as a weak ordered system. As defined in [8] , weak
ordered systems consistency is enforced only on
synchronization barriers. A few consistency protocols have
been defined for weak order systems. The release consistency
described in [4] which was designed for shared memory
systems. It allows computations to carry on after the release of
the lock. This protocol cannot be used in a distributed memory
system.

CHESS was defined as a weak order algorithm because it
relies on the use of synchronization primitives to protect the
shared data in order to maintain the consistency. As defined by
the programming model of CHESS, data moves together with
the code from memory to memory until it is assigned to a
particular processor. When a processor writes a new value to
this data for the first time, further movement is restricted. That
is, it is "frozen", hence the name of the algorithm. At that time
the data is marked as a master copy, indicating that the master
copy of the data will reside in this home memory from now on.
If another processor requires to use this data, it must obtain the
lock that protects it and then fetch a copy of the data from the
home memory.A request will be forwarded to the appropriate
neighbouring processor which will attempt to obtain the lock.
When this is achieved, the processor will reply with the required
copy which is then stored in the requesting processor's
neighbouring memory. The processor will exit the critical
section and sends a message back to the home memory module
with a copy of the updated data right after the processor finished
using the data. The same message contains the lock release
which ensures that data will be updated before the lock is
released again.

VI. RESULTS AND FUTURE WORK

A simulator was developed in C using SIMON [7] to allow
an experimentation with the diffusion algorithm. In [7] also
demonstrate a performance evaluation and software
development and most of the program performance
measurements were obtained which indicate the time spent by
CHESS accessing memory because of :

a) program execution,
b) diffusing work to other processors and
¢) communication traffic.

Based on obtained results CHESS simulator in [9] , CHESS
spends about 10%-35% of total executeion time for work which
is not directly connected with program execution depending on
the benchmark.

For message passing take only 10% except;

1. Matrix multiplication [10] that performs a classical
multiplication of two matrices (NxN), one of which is
fixed in a memory. This program stored as global
arrays to produce the result matrix. Each processor
calculates a part of the resultant matrix determined by
its number, which is used to index the resultant array.
This means that eventually each processor will fetch all
elements of the first matrix and a column of the second
matrix.

2. SOR(NxN) [10] which applies a Square Overelaxation
transform to a matrix (NxN). This program repeatedly
computes the value of grid locations by taking the
average of the four surrounding points. Eventually, this
method converges to a solution of Laplace’s equation
for the given boundary values. Several passes are
performed before the final result.

This greatly depends on the algorithm that the application
used. For example the matrix multiplication which was written
on purpose to generate a worst case situation shows large
message passing time. Similarly, the SOR operates on three
consecutive rows of the array two of which are shared with
other processors. A better coherency protocol which will allow
shared variables to be distributed amongst the processors will
improve this time.

Load calculation takes about 10 - 15% of the total execution
time.. More experimentation with the simulator is required to
evaluate the relative benefits of infrequent load calculation. The
two large benchmarks which are Matrix multiplication and
SOR show very little load calculation time because the mapping
tree is not very deep and thus work is diffused immediately.

The obtained results have shown that programs can be
executed on CHESS with small overhead (up to 35%) and have
indicated arecas where the CHESS architecture could be
improved. One of the definite parts is the OS and the diffusion
algorithm which needs to be developed further. As mentioned
before, The OS need to construct a higher priority to these
queues enabling other waiting processors to continue their
work.

Also another parallel kernel called "Wanda" which was
developed at Cambridge University, can be used which allows

integration of custom code into the kernel. The OS code will be
ported on the prototype and developed further to be customized
for CHESS.

VII. CONCLUSIONS

I have summarized a little bit about the memory hierarchy
of a distributed memory parallel computer, CHESS computer
in [9]. CHESS computer program that started by David Slate
and Larry Atkin which inspired by the their rivalry occurred
with MacHack-6 was an impactful and revolutionary acts in
human history. From what I even have presented, the CHESS
memory hierarchy resembles that of a shared bus multi.
simulated performance of a family of multiprocessor
architectures based on a global shared memory. The processors
are connected to the memory through caches that snoop one or
more shared buses in a crossbar arrangement. We can solve the
problem of keeping the memory consistent by a combination of
two methods: a snooping protocol and a weak order protocol.
The majority of memory accesses, as indicated by the obtained
results, were performed to a neighbouring memory module. By
reducing the long haul communications and the consistency
problems that these remote accesses imply, we expect the
CHESS computer to give a very high performance.

REFERENCES

[1] “A Chronology of Computer Chess and its Literature” by Hans J. Berliner
Computer Science Department, Carneyie-Mellon University, Pittsburyh,
PA, US.A.

[2] JOHN SUSTERSIC AND ALTHURSON, “Coherence Protocols for Bus-
Based and Scalable Multiprocessors, Internet, and Wireless Distributed
Computing Environments: A Survey,” in The Department of Computer
Science and Engineering Pennsylvania State University 202 Pond
Laboratory University Park, PA 16802 USA.

[3] Shaily Mittal, Nitin, " A New Approach to Directory Based Solution for
Cache Coherence Problem ", Department of computer science, Chitkara
University,Baddi- 174103, Solan, Himachal Pradesh (India)

[4] Omri Bahat+*, Armand M. Makowski, “Measuring consistency in TTL-
based caches Department of Electrical and Computer Engineering, The
Institute for Systems Research, University of Maryland, College Park,
MD 20742, United States

[5] C. Gordon Bell, “Multis: A New Class of Multiprocessor Computers,”
American Association for the Advancement of Science, 26 April 1985,
Volume 228, pp. 462-467.

[6] Greenblatt, R. D. et al., The Greenblatt chess program, Proceedings of the
1967 Fall Joint Computer Conference (1967) 801-810.

[71 Richard M. Fujimoto," SIMON : a Simulator of Multiecomputer Networks
", Report No.UCB/CSD 83/140, Computer Science Division, Univercity
of California Berkeley, September 1983.

[8] ROBERT C. STEINKE , GARY J. NUTT, “A Unified Theory of Shared
Memory Consistency”, University of Colorado at Boulder

[91 D. Lioupis, N. Kanellopoulos and M. Stefanidakis, “The Memory
Hierarchy of the CHESS Computer”, University of Patras, School of
Engineering, Dept. of Computer Engineering & Informatics, 26500 Rio-
Patras-Greec

[10] Andy Hopper, Alan Jones, Dimitris Lioupis., Multiple vs Wide Shared
Bus Multiprocessors, Olivetti Research Ltd, Keynes House 24A
Trumpington Street, Cambridge CB2 1QA, England

[11] Digital Equipment Corporation, "CVAX-based Systems", Digital
Technical Journal no. 7, August 1988

	I. INRODUCTION
	Modern computers have the power to follow generalized sets of operations, called programs. These programs enable computers to perform an extremely wide range of tasks. Many existing computers today utilized the power of more than one CPU to provide b...
	Need to be mention that in this paper, I will simplified the Memory Hierarchy of the CHESS architecture which have been a successful research by D. Lioupis, N. Kanellopoulos and M. Stefanidakis in 1993 [9].
	II. THE ‘CHESS’ HISTORY
	III. CHESS ARCHITECTURE
	IV. MEMORY HIERARCHY
	a) Memory-to-memory transfer within cluster:
	b) Intercluster memory-to-memory transfers:

	V. MEMORY CONSISTENCY
	VI. RESULTS AND FUTURE WORK
	VII. CONCLUSIONS
	REFERENCES

