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Abstract—In this paper , I introduce how the CHESS computer 
memories work. CHESS is a distributed memory multiprocessor 
based on a grid topology. Processors and memories alternate on 
both directions of the grid to form a processing surface on which 
parallel programs are mapped. Memories are used for 
communication, to reduce the communication overhead, as well as 
for storing programs for execution This paper also will present a 
move-ordering algorithm that tend to mimic something of the 
human thought process when choosing chess moves. 
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I. INRODUCTION 
 

Modern computers have the power to follow generalized sets of 
operations, called programs. These programs enable computers 
to perform an extremely wide range of tasks. Many existing 
computers today utilized  the power of more than one CPU to 
provide better cost-performance than a single CPU or a 
supercomputer. These computers named "multis" by Gordon 
Bell [5] are mostly based on the shared bus - shared memory 
model, where several processors are connected to a shared 
memory module through a shared bus. Sequent, Firefly  and the 
Encore are one of the examples of these machines.  
These computers are easy to program and supply significant 
speed-ups thanks to its shared memory. .However, the cons that 
also intact, is that the limited bandwidth of the shared bus which 
restricts the amount of processors within the system which will 
be connected to an equivalent memory, and thus the 
performance of the system. To unravel this problem we will 
increase the speed of the bus [11], which isn't always easy due 
to technology limitations, or we will use more wires to attach to 
the memory. For a given technology, more wires provide more 
bandwidth, but it's not obvious which is that the best way to 
connect the wires due to complications like caches, code 
sharing and system complexity. Distributed memory 
architectures promise a far better capacity to be changed in size 
or scale, but it's harder to program efficiently. In [1] an 
architecture called CHESS was suggests which mixes the 
simplest of both worlds: that's , it's a distributed memory 
architecture, which is programmed consistent with the shared 
memory ideas. 

Need to be mention that in this paper, I will simplified the 
Memory Hierarchy of the CHESS architecture which have been 
a successful research by D. Lioupis, N. Kanellopoulos and M. 
Stefanidakis in 1993 [9]. 

 

II. THE ‘CHESS’ HISTORY 
 

     From 1955 to 1958 the first actual computer chess programs 
appeared. In [1], there were three programs which corresponded 
exactly to the three categories that have been specified. 
Unfortunately, all three of these programs played very mediocre 
chess, for reasons that are now quite clear, but were hard to 
appreciate at that time. Because of this lack of success, 
computer chess was for a time thought to be too difficult to 
tackle effectively, although an isolated Batchelor's thesis was 
produced by Kotok 2 at MIT under the direction of John 
McCarthy.  
    In 1966, Richard Greenblatt [6] from MIT paved the way for 
his revolutionary efforts in computer chess. He wrote the first 
program that could command like an actual player. This 
program was good and far more better than any of its 
predecessors had. MacHack-6 (as Greenblatt's program was 
named) soon played in human tournaments, established a 
performance rating in the 1400-1500 USCF range (Class "C") 
and showed that this program capable of beating tournament 
caliber players. Its achievements spawned a broadside of efforts 
all over the world. Since 1970 there have been annual U.S. 
Computer Chess Championships (held concurrently with the 
ACM annual meetings), and a World Computer Championship 
series was begun at IFIPS in Stockholm 1974.  
     Unfortunately, Greenblatt, who started it all, could not be  
enter his program in any of these events. During this period, the 
Northwestern University chess program, programmed by David 
Slate and Larry Atkin, and variously named CHESS, that also 
evolve inti CHESS 3.0 to CHESS 4.2 dominated the chess 
scene. It won every U.S. Computer Championship except the 
1974 event. Years after years improvising the program , the fall 
of 1975, CHESS 4.4, the latest incarnation of the powerful 
Northwestern University Chess program, again won the U.S. 
Computer Championship.  
 



III. CHESS ARCHITECTURE  
 

3.1 Rationale  

In order to achieve high performance when executing 
parallel programs in a parallel architecture, a minimum 
communication time must be kept. Communication is used to 
transfer work to other processors and synchronize operations in 
different processors. In shared memory architectures, 
communication between processors is performed through the 
memory while, in distributed memory architectures, 
communication is based on message passing.  

It is important to note that when a processor is assigned a 
work granule, the appropriate code must be tranferred to its 
memory if it is not already there. It is therefore advantageous to 
store the code directly in the memory rather than passing it 
through a communication network. CHESS achieves this by 
using the memory as a communication media.. 

 

3.2 Logical Model   

 

 

      Figure 1, show the CHESS architecture which is a partially 
shared, distributed memory architecture. Each processor (P) is 
connected to four memories and each memory to four 
processors. The grid that is formed by such an interconnection 
is wrapped around in both directions which can be expanded in 
either direction by connecting more memories and processors. 
The architecture, therefore, can support large number of 
processors (>100) which can execute parallel programs.  

 

 

 

 

3.3 Execution model  
 
      The execution model of CHESS is predicted on the idea of 
mapping the execution tree of a parallel program onto a grid of 
processors. One processor is assigned the root of the tree (which 
is the whole program) and spreads out the work to its 
neighbours until the program is executed. The rules that 
monetized this map is the diffusion algorithm and the 
programming model. 
 
      The diffusion algorithm determines where and when the 
work are going to be  assigned. Its effort is to specialized 
balancing the load on the processor grid so as to extend the  
efficiency. Therefore, it plan to distribute the work as many as 
possible while putting communication cost at its lowest. The 
detailed description of this algorithm isn’t adressed in this paper 
but we will assume that the OS running on CHESS includes 
such an algorithm. Algorithms similar to those utilized in [2], 
can be used  
 
      Spreading out work consists of copying a work granule into 
a processor's memory. A work granule is a self contained piece 
of work 50-500 lines of code. Each granule consists of :        
         (a) a header which indicates the needed resources for the         
execution of work and  
         (b) a body that contains the code to be executed.  
A granule is assigned to a processor consistent with the  data 
dependencies and the processor's load. 

 
 

   
 
  

     Figure 2 shows a processor's work queues. Due to the 
topology of CHESS there are four work queues for each 
processor, one for each neighbouring memory. QN is the north 
queue in the north memory module (MN). When a work granule 



is assigned to this processor, a pointer is set in its work queue. 
The processor services each job in turn from its work queue. 
       
      Each memory module also contains another set of four 
queues which are used to buffer through traffic generated by 
processor communication. The OS assigns higher priority to 
these queues enabling other waiting processors to continue their 
work.  
       
      Let us assume that the processor north of P wants to assign 
some work to processor P. The code associated with this work 
is then copied by this processor in MN and a pointer to this code 
in QN. Processor P periodically scans the work queues and 
executes any remaining work. This operation is supervised by 
the OS which ensures correct operation. In order to simplify the 
architecture, the OS code is also executed by the processors. 

 
 
 
 

3.4 Physical Implementation  
 

 
 
 
         Since a memory connects to four processors, the four 
ports of this memory are implemented using four caches ($) 
interconnected to a memory bus (M-bus) as can be seen in 
figure 3 (M 1 memory bus). The four processors, four memories 
and bus network (P-buses and M-buses) define a CHESS 
physical tile. The first and third M-bus as well as the second 
and fourth P-bus are shifted by two places in order to form the 
required grid interconnection. The lines at the end of the split 
buses indicate connectors (CN1, CE1, etc). the smallest 
configuration possible which is 4 processors and 4 memories, 
is formed by connecting together the north connector with the 
south and therefore the east with the west. 

 
 

IV. MEMORY HIERARCHY  
 

     Basically, the memory hierarchy of CHESS computer are so 
near to resembles the memory hierarchy of shared bus 
multiprocessors. Figure 4 shows a memory cluster which is 
when a processor connected to its four neighbouring memories 
that in turn are connected to their neighbouring processors 
(eight processors all together). The boundaries of the memory 
cluster are the eight surrounding processors (boarder 
processors) which are shared by the neighbouring clusters. To 
increase the bandwidth to memory, we use a multiple bus 
architecture. The resulting architecture uses a grid of buses with 
a cache at each cross-point to attach to memory.  
 

Each memory is split into pages. For each page, it is swapped 
to the disc when a memory module becomes full.The disc 
controller is connected to the central processor P-bus of a 
memory cluster, which controls the paging of its four 
neighbouring memory modules. This suggests that only one disc 
is required per four memory modules which is consistent with 
the physical implementation described. For an instant, in figure 
3 shown the physical tile where the disc controller can be 
connected to the P2 processor, which connects to all four 
memories of this particular tile. 

There are two typical operations within the CHESS 
architecture concerning to the memory. The information been 
safely transferred in this traffic because is it marked as non-
cacheable.  

 

 

 



a) Memory-to-memory transfer within cluster:  
this operation can be performed directly either by the 

processor located in the center of the cluster, or by a processor 
common to both memories 

b) Intercluster memory-to-memory transfers: 
 this operation can be performed directly if there is a 

processor common to both memories (i.e. a border processor), 
otherwise, the transfer will be routed through the shortest route.  

Using memory as a buffer for communication simplifies the 
architecture design in the expense of increased traffic on the bus 
network. Since there are only four processors on the M-bus we 
expect that memory buses will not be heavily loaded. The cache 
write back replacement strategy employed will further reduce 
this load. 

V. MEMORY CONSISTENCY 
 
How great and impactful the programming model and memory 
hierarchy of CHESS shown when it can allow multiple copies  
of an equivalent variable to exist in the system so as to extend 
performance and reduce hot spots. Since any processor can 
update this variable at any time, the architecture must provide a 
mechanism to ensure global data consistency. A program being 
executed on CHESS contains private and shared data. The local 
variables and constants of a procedure are the private data 
which reside together with the code in the same memory 
module. There is no consistency problem with these variables. 
Shared data on the other hand are global variables accessed by 
more than one procedure. These procedures can be executed by 
different processors, all of which need access to the variables. 
According to how far away these processors are, consistency 
will be maintained by two protocols:  
   
   1. Neighbouring processors which share data through a   
common memory module are connected on a shared bus 
through a cache. These caches employ a simple bus snooping 
consistency protocol like those described in [3] in order to 
maintain consistency as described in section 5.1. 
     
   2.  If a processor needs to access a shared variable which does 
not reside in its memory, it forwards a requesting message to a 
processor neighbouring the memory module which holds this 
shared variable. The reply message contains the data including 
all the required information to implement a weak order 
consistency protocol called "freeze" consistency protocol 
which is described in section 5.2.  
 
 
5.1 Snooping Cache Consist 
 
Due to the inconsistency occurs in the cacheswithin the first 
level of the implementation of CHESS, any cache attached to a 
memory can request a copy of a variable. Since these caches are 
connected to a common bus, standard bus snooping protocols 
can be used to maintain consistency. Shared data, however, 
generates some inconsistencies which are handled by the 
snooping protocol. With the introduction of multis a lot of 

research effort was directed in the area of cache consistency on 
a shared bus. In the CHESS architecture, due to the small 
number of processors connected on the same bus there is no 
great strain on the bus and consequently no strain on the 
snooping protocol. Since we plan to use off-the-self 
components we will adopt the snooping protocol implemented 
in the cache used. We consider that a protocol similar to the one 
implemented by the SPARC cache controller is adequate for 
CHESS.  
 
4.2 Freeze Consistency Protocol  
 
     While memory modules are consistent with their caches, 
memories must remain consistent with each other since copies 
of shared data are allowed to exist in different memory 
modules. In maintaining memory module consistency, CHESS 
operates as a weak ordered system. As defined in [8] , weak 
ordered systems consistency is enforced only on 
synchronization barriers. A few consistency protocols have 
been defined for weak order systems. The release consistency 
described in [4] which was designed for shared memory 
systems. It allows computations to carry on after the release of 
the lock. This protocol cannot be used in a distributed memory 
system.  
     CHESS was defined as a weak order algorithm because it 
relies on the use of synchronization primitives to protect the 
shared data in order to maintain the consistency. As defined by 
the programming model of CHESS, data moves together with 
the code from memory to memory until it is assigned to a 
particular processor. When a processor writes a new value to 
this data for the first time, further movement is restricted. That 
is, it is "frozen", hence the name of the algorithm. At that time 
the data is marked as a master copy, indicating that the master 
copy of the data will reside in this home memory from now on. 
If another processor requires to use this data, it must obtain the 
lock that protects it and then fetch a copy of the data from the 
home memory.A request will be forwarded to the appropriate 
neighbouring processor which will attempt to obtain the lock. 
When this is achieved, the processor will reply with the required 
copy which is then stored in the requesting processor's 
neighbouring memory. The processor will exit the critical 
section and sends a message back to the home memory module 
with a copy of the updated data right after the processor finished 
using the data. The same message contains the lock release 
which ensures that data will be updated before the lock is 
released again. 
 
 

VI. RESULTS AND FUTURE WORK 
 

     A simulator was developed in C using SIMON [7] to allow 
an experimentation with the diffusion algorithm. In [7] also 
demonstrate a performance evaluation and software 
development and most of the program performance 
measurements were obtained which indicate the time spent by 
CHESS accessing memory because of : 



 
     a) program execution,  
     b) diffusing work to other processors and 
     c) communication traffic. 
 
      Based on obtained results CHESS simulator in [9] , CHESS 
spends about 10%-35% of total executeion time for work which 
is not directly connected with program execution depending on 
the benchmark. 
 
 For message passing take only 10%  except; 
 

1. Matrix multiplication [10] that performs a classical 
multiplication of two matrices (NxN), one of which is 
fixed in a memory. This program stored as global 
arrays to produce the result matrix. Each processor 
calculates a part of the resultant matrix determined by 
its number, which is used to index the resultant array. 
This means that eventually each processor will fetch all 
elements of the first matrix and a column of the second 
matrix. 

2. SOR(NxN) [10] which applies a Square Overelaxation 
transform to a matrix (NxN). This program repeatedly 
computes the value of grid locations by taking the 
average of the four surrounding points. Eventually, this 
method converges to a solution of Laplace’s equation 
for the given boundary values. Several passes are 
performed before the final result. 
 

     This greatly depends on the algorithm that the application 
used.  For example the matrix multiplication which was written 
on purpose to generate a worst case situation shows large 
message passing time. Similarly, the SOR operates on three 
consecutive rows of the array two of which are shared with 
other processors. A better coherency protocol which will allow 
shared variables to be distributed amongst the processors will 
improve this time.  
 
      Load calculation takes about 10 - 15% of the total execution 
time.. More experimentation with the simulator is required to 
evaluate the relative benefits of infrequent load calculation. The 
two large benchmarks which are Matrix multiplication and 
SOR show very little load calculation time because the mapping 
tree is not very deep and thus work is diffused immediately. 
 
   The obtained results have shown that programs can be 
executed on CHESS with small overhead (up to 35%) and have 
indicated areas where the CHESS architecture could be 
improved. One of the definite parts is the OS and the diffusion 
algorithm which needs to be developed further. As mentioned 
before, The OS need to construct a higher priority to these 
queues enabling other waiting processors to continue their 
work.  
 
      Also another parallel kernel called "Wanda" which was 
developed at Cambridge University, can be used which allows 

integration of custom code into the kernel. The OS code will be 
ported on the prototype and developed further to be customized 
for CHESS. 

VII.   CONCLUSIONS 
       I have summarized a little bit about the memory hierarchy 
of a distributed memory parallel computer, CHESS computer 
in [9]. CHESS computer program that started by David Slate 
and Larry Atkin which inspired by the their rivalry occurred 
with MacHack-6 was an impactful and revolutionary acts in 
human history. From what I even have presented, the CHESS 
memory hierarchy resembles that of a shared bus multi. 
simulated performance of a family of multiprocessor 
architectures based on a global shared memory. The processors 
are connected to the memory through caches that snoop one or 
more shared buses in a crossbar arrangement.We can solve the 
problem of keeping the memory consistent by a combination of 
two methods: a snooping protocol and a weak order protocol. 
The majority of memory accesses, as indicated by the obtained 
results, were performed to a neighbouring memory module. By 
reducing the long haul communications and the consistency 
problems that these remote accesses imply, we expect the 
CHESS computer to give a very high performance. 
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