

SCHOOL OF COMPUTING SEMESTER 1, 2020/2021

SECI1013-07 STRUKTUR DISKRIT

(DISCRETE STRUCTURE)

SECTION: 07

ASSIGNMENT 01

GROUP: 02

NAME	MATRIC NO.
ASIF IQBAL	A19EC4035
Md Masqurul Hasan	A20EC4031
MUHAMMAD AMIRUDDIN BIN ZULKIFLI	A20EC0208

SUBMITTED TO:

Dr. Haswadi Bin Hassan

DISCRETE STRUCTURE (SECI 1013)

TUTORIAL 1

DUE DATE: 2 December, 2020

1. Let the universal set be the set **R** of all real numbers and let $A = \{x \in \mathbb{R} \mid 0 \le x \le 2\}$, $B = \{x \in \mathbb{R} \mid 1 \le x \le 4\}$ and $C = \{x \in \mathbb{R} \mid 3 \le x \le 9\}$. Find each of the following:

Answer:

$$A = \{1,2\}$$

$$B = \{1,2,3\}$$

$$C = \{3,4,5,6,7,8\}$$

a) $A \cup C$

$$\{1,2\} \cup \{3,4,5,6,7,8\}$$

$$A \cup C = \{1,2,3,4,5,6,7,8\}$$

b) $(A \cup B)'$

$$(A \cup B) = \{1,2\} \cup \{1,2,3\}$$

$$= \{1,2,3\}$$

$$(A \cup B)' = U - (A \cup B)$$

= $\{1,2,3,4,5,6,7,8\} - \{1,2,3\}$

$$= \{4,5,6,7,8\}$$

c) $A' \cup B'$

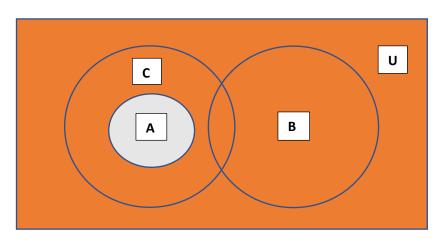
$$A' = U-A$$

$$= \{1,2,3,4,5,6,7,8\} - \{1,2\}$$

$$= \{3,4,5,6,7,8\}$$

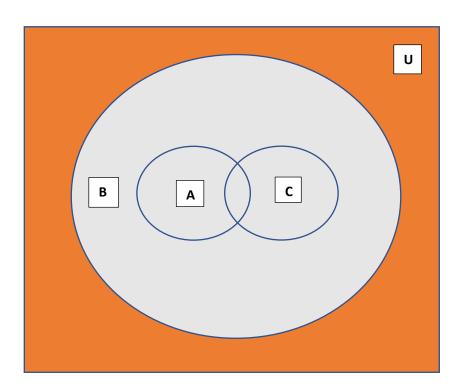
$$B' = U - B$$

$$= \{1,2,3,4,5,6,7,8\} - \{1,2,3\}$$

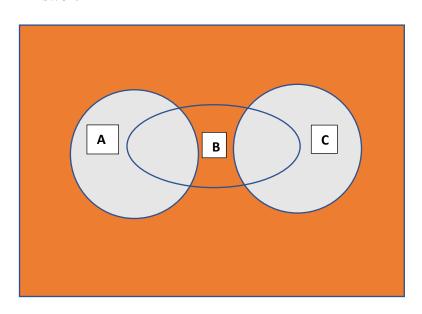

$$= \{4,5,6,7,8\}$$

$$A' \cup B' = \{3,4,5,6,7,8\}$$

2. Draw Venn diagrams to describe sets A, B, and C that satisfy the given conditions.


a)
$$A \cap B = \emptyset$$
, $A \subseteq C$, $C \cap B \neq \emptyset$

Answer:


b) $A \subseteq B, C \subseteq B, A \cap C \neq \emptyset$

Answer:

c) $A \cap B \neq \emptyset$, $B \cap C \neq \emptyset$, $A \cap C = \emptyset$, $A \not\subset B$, $C \not\subset B$

Answer:

3. Given two relations S and T from A to B,

$$S \cap T = \{(x,y) \in A \times B \mid (x,y) \in S \text{ and } (x,y) \in T\}$$

$$S \cup T = \{(x,y) \in A \times B \mid (x,y) \in S \text{ or } (x,y) \in T\}$$

Let $A = \{-1, 1, 2, 4\}$ and $B = \{1,2\}$ and defined binary relations S and T from A to B as follows:

For all
$$(x,y) \in A \times B$$
, $x S y \leftrightarrow |x| = |y|$

For all
$$(x,y) \in A \times B$$
, $x T y \leftrightarrow x - y$ is even

State explicitly which ordered pairs are in $A \times B$, S, T, $S \cap T$, and $S \cup T$.

Answer:

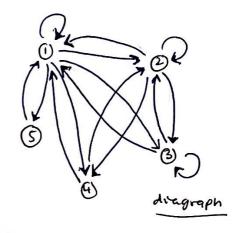
$$\mathbf{A} \times \mathbf{B} = \{(-1,1), (-1,2), (1,1), (1,2), (2,1), (2,2), (4,1), (4,2)\}$$

$$S = \{(-1,1), (1,1,), (2,2)\}$$

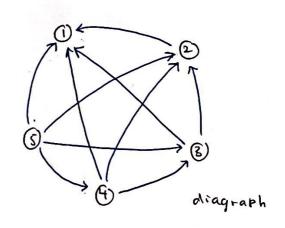
$$T = \{(-1,1), (1,1), (2,2), (4,2)\}$$

$$S \cap T = \{(-1,1), (1,1), (2,2)\}$$

$$S \cup T = \{(-1,1), (1,1), (2,2), (4,2)\}$$


7 ((1p/q) v (1p/19)) v (p/q) = p.

- O 7 ((7p/q) v [i(pvq)]) v (p/q) be morgan's Laws
- D [7 (7PAQ) N (PVQ)] V (PAQ) De morgan's Laws
- (B) [(PV79) N(PV9)] V(PN9) bouble Nagatron Laws
- 9 [pv(qn-q)] v(pnq) bistributive laws
- (pVF) V (p1q) Negarran Laws
 - (b) pv(p1q) Identity Laws
 - 3 p Absurption Laws


PEP

Question 5

A) $R_{1} = \{(x_{1}y) \mid x_{1}y \leq 6\}$, $R_{1} = \{(x_{1}y), (x_{1}x), (x_{1}x$

$$R_{2}$$
 ? { (2,1), (3,1), (3,2), (4,1), (4,2), (4,3), (5,1), (5,2), (5,3), (5,4) }

- () Ri is a symmetric and transitive relation
- d) 122 is a transitive relation

Ru Marrix
$$R_1 : 1 \begin{cases} 1 & 0 & 0 \\ 2 & 0 & 1 & 1 \\ 3 & 1 & 0 & 1 \end{cases}$$

$$R_1: \left\{ (1/1), (2/2), (2/3), (3/1), (3/3) \right\}$$

matrix
$$2 : 1 \begin{cases} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 3 & 1 & 0 & 1 \end{cases}$$

Answor X

Let,
$$f(x) = x$$
, $f(x) = -x$,

when,
$$x = 2$$
 $f+q(x) = 2-2$
 $z = 0$

Hepe, f+q(x) has two same co-domain for two diffrent domains.

Fiver thry.

Answer 8

Given that,

$$@ c1 = 1$$
 $c2 = 2$

So, for n>2 we have combination of more than 2 stairs.

Lets take cI as = cn-1 c2 as = cn-2

So, Recuppence pelation is

Hear fifter has form same or storialing.

e-distribution Division Divisi

Answeb 9

1/2 - 1/2 - 1 to - 2 + 1 to - 2 + 1

$$0 \quad t_3 = t_3 - 1 + t_3 - 2 + t_3 - 3$$

$$= t_2 + t_1 + t_0$$

$$= 1 + 1 + 0$$

$$= 2$$

Mi than!

calle . total

July of months

(0.95 14 5).

Oracle of mar

in the state of

$$t_6 = t_6 - 1 + t_6 - 2 + t_6 - 3$$

$$= t_5 + t_4 + t_3 + \dots = 13$$

$$= x + 4 + 2$$

$$= 13.$$

$$t_7 = t_7 - 1 + t_7 - 2 + t_7 - 3 + \dots = 13 + 7 + 3$$

$$= t_6 + t_5 + t_4$$

$$= 13 + 7 + 3$$

$$= 24 \quad \text{Answers}.$$
There is n

Input: n

Output: t(n)If (n=1 op n=2)peturn 1

else if (n=0)peturn 0

peturn t(n-1) + t(n-2) + t(n-3)