

SECI 1013-03 STRUKTUR DISKRIT (DISCRETE STRUCTURE) SEMESTER 1, 2020/2021 ASSIGNMENT 2

NAME	MATRIC NUMBER
AFIF HAZMIE ARSYAD BIN AGUS	A20EC0176
AHMAD AIMAN HAFIZI BIN MUHAMMAD	A20EC0177
MUHAMMAD IMRAN HAKIMI BIN MOHD SHUKRI	A20EC0213
NAYLI NABIHAH BINTI JASNI	A20EC0105

ANSWER:

1. a)
$$6*6*6=216$$

b)
$$P(6,3) = \frac{6!}{(6-3)!} = 120$$

c)
$$1*3*3=9$$

 $1*3*3=9$
 $9+9=18$ ways

- 2. a) $5! \times (6-1)!$ 120 ways x 120 ways = 14,400 ways
 - b) The couple: P(2,2) = 2 ways All of them: (9-1)! Ways = 40,320 ways

2 ways \times 40,320 ways = 80,640 ways.

c) Men at round table: (5-1)! = 24 ways Women arrangement: 5! = 120 ways

24 ways x 120 ways = 2,880 ways.

d) Anita and Husband arrangement: P(2,2) = 2 ways All of them: 11! ways

2 ways x 11! ways = 79,833,600 ways.

3. a)
$$= 5 \times 4 \times 3 \times 2 \times 1 = 5! = 120 \text{ ways}$$

b)
$$(_{-})_{--} = 1 \times 4 \times 3 \times 2 \times 1 = 1 \times 4! = 24 \text{ ways}$$

c)
$$(_{-})(_{-}) = 2! \times 2! \times 3! = 24 \text{ ways}$$

4. a)
$$n = 6, r = 24$$
 $(6 + 12 - 1)! / [12! x (6 - 1)!] = C (17, 12) = 6,188 ways$

b)
$$24-2(6) = 12$$
 croissants left $n = 6, r = 12$ $(6+12-1)!/[12! x (6-1)!] = C(17,12) = 6,188$

c)
$$24-5$$
 chocolate -3 almond $=16$ croissants left $n=6, r=16$ $(6+16-1)!/[16! x 5!] = C(21, 16) = 20,349$

5. Penalty

a. First 10 penalty5 penalty for each teamLet n round = kick for Team A and Team B

Team A:

2 wins among 4 rounds:
$$C(4,2) = \frac{4!}{2!(4-2)!} = 6$$

1 win among 3 rounds: $C(3,1) = \frac{3!}{2!(3-1)!} = 3$

Remaining round:

2 wins and 1 ties/wins:
$$C(4,2)$$
. $C(3,1)$. $C(4,1)$.

Since there are 2 teams:

$$(36+96)$$
 x 2 = 264

b. 20 penalty

For the first 10 kicks:

Total outcomes = $2^{10} = 1024$ outcomes for each kick taken

From part a:

1024 - 264 = 760 scenarios not settled from first 10 penalty

Scenarios of kick settled in 10 penalty kicks = 264

Total number of scenarios = 760.264 = 200,640

c. More than 20

Total outcomes for 10 penalty: $2^{10} = 1024$ scenarios

Sudden-death shootout: 2 possibilities in each round (win or tie) = 5 rounds of penalty

Game not settle in 10 penalty kick = 760 scenarios

Total scenarios = 760.760.10 = 5,776,000

6. 10: questions 4: answer choices

 $10 \times 4 = 40$ possible responds

$$m = 3, k = 40, n = ?$$

$$n = k(m-1) + 1$$

$$n = 40(3-1) + 1$$

n, minimum number of students = 81.

7.
$$P(H) = 0.75, P(M) = 0.65, P(H \cap M) = 0.5$$

$$P(H') = 0.25, P(M') = 0.35, P(H' \cup M') = 0.5$$

$$\frac{35 \ candidates}{Total \ candidates, x} = P(H' \cap M')$$

$$P(H' \cup M') = P(H') + P(M') - P(H' \cap M')$$

$$0.5 = 0.25 + 0.35 - P(H' \cap M')$$

$$0.1 = P(H' \cap M')$$

$$\frac{35 \ candidates}{Total \ candidates, x} = 0.1$$

Total candidates, x = 35 / 0.1 = 350 candidates.

8. Number 1 at least one digit

$$C(9,1) = \frac{9!}{1!(9-1)!} = 9$$

Number 1 at least 2 digits

$$5*1*1=5$$

$$Total = 45 + 5$$

$$= 50$$

$$Total choices = 780 - 300$$

$$= 480$$

$$Probability = \frac{50}{480}$$

$$= 0.1042$$

9. a)
$$P(10, 6) = \frac{10!}{(10-6)!} = 151200$$

b)
$$1!*4!*5! = 2880$$

$$6!*4! = 17280$$

$$4!*6! = 17280$$

$$Total = 2880 + 1152 + 864 + 1152 + 2880 + 17280 + 17280$$
$$= 43488$$

Probability =
$$\frac{43488}{151200}$$
 = 0.2876

10. a)
$$P(E) = 0.4 P(R \mid E) = 0.6$$

$$P(L) = 0.4 P(R|L) = 0.6$$

$$P(H) = 0.4 P(R|H) = 0.6$$

$$P(R) = P(R \mid E) \cdot P(E) + P(R \mid L) \cdot P(E) + P(R \mid H) \cdot P(H)$$

$$P(R) = (0.6)(0.4) + (0.8)(0.1) + (1)(0.5)$$

$$P(R) = 0.82$$

b) Email, Letter and Handphone are independent event

So,
$$P(E \cap R) = P(E) \cdot P(R) = (0.4)(0.82) = 0.328$$

$$P(E | R) = P(E \cap R) / P(R) = 0.328 / 0.82 = 0.4$$

11.
$$T = Light Trucks F = Fatality$$

 $C = Car$

$$P(F \mid C) = 0.0002 \quad P(F \mid T) = 0.00025$$

$$P(T \mid F) = ?$$

$$P(T \mid F) = \frac{P(F \mid T).P(T)}{P(F \mid T).P(T) + P(F \mid C).P(C)}$$

$$= \frac{0.00025(0.4)}{0.00025(0.4) + 0.0002(0.6)}$$

$$P(T \mid F) = \frac{5}{11}$$

12. Total ways without restrictions: $4^9 = 262$, 144 ways.

Disallowed ways (If all the letters are filled in 3 boxes only): 4 ways $\times 3^9 = 78,732$ ways.

Disallowed ways (If all the letters are filled in 2 boxes only): 6 ways x 2^9 = 3, 072 ways.

Disallowed ways (If all the letters are filled in 1 box only): 4 ways x $1^9 = 4$ ways.

Inclusion - Exclusion.

$$262,144 - (78,732 - 3,072 - 4) = 186,488$$
 ways.