

School of Computing Faculty of Engineering UNIVERSITI TEKNOLOGI MALAYSIA

SUBJECT : SECR1013 DIGITAL LOGIC

SESSION/SEM : 03

LAB 3 : SYNCHRONOUS DIGITAL COUNTER

NAME : Nur Syakirah Mohd Shukri

DATE : 18-Jan-21

Lab #3

Identifying The Properties of a Synchronous Counter

A. Aims

- 1) Expose the student with experience on constructing synchronous counter circuit using Flip-Flop IC, Basic Gate ICs, Breadboard and ETS-5000 Digital Kit.
- 2) Promote critical thinking among students by analyzing the given circuit and identifying the behavior of the digital circuit.

B. Objectives

The objectives of this lab activity are to:

- 1) Implement a synchronous counter circuit into physical circuit using Breadboard, Flip-Flops, Basic Gates and Switches.
- 2) Completing the next-state table of the counter circuit.
- 3) Sketch the state diagram of the counter circuit.
- 4) Identify the properties of the counter.

C. Materials And Equipments

Materials and equipment required for this lab are as follows:

Item Name	Number of Item
1. Breadboard	1
2. 7408 Quad 2-Input AND	1
3. 7404 Hex Inverter	1
4. 7432 Quad 2-input OR	1
5. 7476 Dual J-K Flip Flop	1
6. ETS-5000 Digital Kit	1

D. Preliminary Works

1) Determine the logic level for each input combinations in Table 1 so that the desired result can be realized.

Table 1

Desired Result	PRE	CLR	J	K	CLK	Q
Set initial value Q = 1	1	0	X	X		1
Output Q stays the same	1	1	0	0	#	1
Output Q become 0, no change in asynchronous input	1	1	0	1	#	0
Output Q is not the previous Q	1	1	1	1	#	1
RESET Q	1	1	0	1	#	0
SET Q	1	1	1	0	#	1

- 2) Answer all questions.
- a) Which state that JK flip-flop has, but not on SR flip-flop.
 - = Toggle
- b) Identify whether the JK flip flop in 7476, is a positive-edge triggered or negative-edge triggered flip flop.
 - = negative edge triggered flip flop

E. Lab Activities: PART A

1) You are given a counter circuit as shown in Figure 4.

Figure 4: A Synchronous Counter Circuit

- 2) By using all materials and equipment's listed in section C, construct the physical circuit of Figure 4. (Make sure all ICs are connected to Vcc and GND).
- 3) Investigate the behavior of the counter by observing the next state of the counter for all combination of *Present State* and *X* values. Complete the *NextState* table of the counter in Table 2. Ensure the Switch 0 is in HIGH state. (0=LOW, 1=HIGH)

Table 2

Switch 7	Pı	resent State	Ne	xt State
X	Q1 LED 1	Q0 LED 0	Q1 LED 1	Q0 LED 0
0	0	0	0	1
0	0	1	1	0
0	1	0	1	1
0	1	1	1	1
1	0	0	0	0
1	0	1	0	0
1	1	0	0	1
1	1	1	1	0

4) By referring to the *Next-State* in Table 2, sketch the state diagram of the counter.

- 5) By referring to the *Next-State* in Table 2 and the state diagram in (4), answer all questions.
 - a) What is the main indicator to decide that the counter is a synchronous counter?

 = in synchronous flipflop triggered with the same clock signal while asynchronous Is triggered with different clock signal.
 - b) How many states are available for the counter and what are they? = there are 4. 00 01 10 11
 - c) What is the function of Switch 7(X) in the circuit?
 - = mode selector
 - d) What is the function of Switch 0 and Switch 1 in the circuit?

 = switch 0 function as work as preset while switch 1 work as clear to reset
 - e) Is the counter a saturated counter or recycle counter?
 - = saturated counter

- 6) Refering to state diagram in 4, draw and built a synchronous counter using D flip-flop.
 - a) Built the next state and transition table using the header in Table 3

Table 3

0	FF	ł	mode	C	c lech	N
	-	-/	<u> </u>			
	0	X	00) \ \(\sigma\)	20	
_	(ii	74		1	01	١
		1	ر ا	7		-
		5	10	P	0	

Input	Input Present State		resent State Next State		J FF Tr	ansision
X	Q1	Q0	Q1+	Q0+	D1	D0
0	0	0	0	1	0	1
0	0	1	1	0	1	0
0	1	0	1	1	1	1
0	1	1	0	0	0	0
1	0	0	1	1	1	1
1	0	1	0	0	0	0
1	1	0	0	1	0	1
1	1	1	1	0	1	0

b) Get the optimized Boolean expression.

X\Q1Q0	00	01	11	10
0	0	0	1	1
1	0	0	1	1

XQ1Q0

011

010

111

1 1 0 D1=Q1

X\Q1Q0	00	01	11	10
0	0	1	1	0
1	0	1	1	0

XQ1Q0

001

011

101

1 1 1 D0=Q0

D=Q1+Q0

c) Draw the complete final circuit design in Deeds.

7) Repeat steps in Q(6) using T flip-flop.

Input	Present	State	Next	State	T FF Tr	ansision
X	Q1	Q0	Q1+	Q0+	T1	T0
0	0	0	X	X	X	X
0	0	1	1	0	1	0
0	1	0	0	1	1	1
0	1	1	X	X	X	X
1	0	0	X	X	X	X
1	0	1	1	1	0	0
1	1	0	X	X	X	X
1	1	1	0	1	1	0

a) Get the optimized Boolean expression.

X\Q1Q0	00	01	11	10
0	X	1	X	1
1	X	0	1	X

X Q1 Q0	X Q1 Q0
000	0 1 1
0 0 1	0 1 0
0 1 1	1 1 1
010	1 1 0
=X'	=Q1 $T1=X'+Q1$

X\Q1Q0	00	01	11	10
0	X	0	X	1
1	X	0	0	X

X Q1 Q0

011

010

T0=X'Q1

b) Draw the complete final circuit design in Deeds.

