

CHAPTER 2

(Part 3)

SEQUENCE, RECURRENCE RELATIONS & RECURSIVE ALGORITHM

SEQUENCE & RECURRENCE RELATIONS

Sequence

Definition:

A sequence is a function whose domain is either all the integers between two given integers or all the integers greater than or equal to a given integer.

In the sequence denoted

$$a_m$$
, a_{m+1} , a_{m+2} , ... a_n

Note:

Each individual element a_k is called term; k = index/subscript $a_m = initial term$; $a_n = final term$

• An explicit formula or general formula for a sequence is a rule that shows how the values of a_k depend on k.

• Consider the sequence $\{a_n\}$, where

$$a_n = \frac{1}{n}$$

■ The list of the terms of this sequence, beginning with a_1 , namely

$$a_1, a_2, a_3, a_4, \dots$$

start with

$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$$

Recurrance Relations

- A recurrence relations (or recurrence) for the sequence $\{a_n\}$ is an equation that expresses a_n in terms of one or more of the previous terms of sequence, namely, $a_0, a_1, a_2, ..., a_{n-1}$, for all integers n with $n \ge n_0$, where n_0 is a nonnegative integer.
- A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation.
- The information called the initial condition(s) for the recurrence must be provided to give enough information about the equation to get started.

Simple Recurrence Relation

- The simplest form of a recurrence relation is the case where the next term depends only on the immediately previous term.
- For example, given an initial condition, $a_1 = 3$, the list of terms a_1, a_2, a_3, \ldots , begin with 3, 8, 13, 18, 23, ..., is generated from a recurrence relation defined by

$$a_n = a_{n-1} + 5, \qquad n \ge 2$$

n-th Term of a Sequence

Recurrence relation can be used to compute any *n*-th term of the sequence.

Example:

Let $\{a_n\}$ be a sequence that satisfies the recurrence relation $a_n = a_{n-1} + 3$ for $n = 1, 2, 3, \ldots$, and suppose that $a_0 = 2$. What are a_1, a_2 , and a_3 ?

Solution:

We see from the recurrence relation that,

$$a_1 = a_0 + 3 = 2 + 3 = 5;$$

$$a_2 = a_1 + 3 = 5 + 3 = 8;$$

$$a_3 = a_2 + 3 = 8 + 3 = 11$$

Consider the following sequence:

$$3, 9, 27, 81, 243, \ldots$$

The above sequence shows a pattern:

$$3^1$$
, 3^2 , 3^3 , 3^4 , 3^5 , ... a_1 , a_2 , a_3 , a_4 , a_5 , ...

Recurrence relation is defined by:

$$a_n = 3^n, n \ge 1$$

Given initial condition, $a_0 = 1$ and recurrence relation:

$$a_n = 1 + 2a_{n-1}, n \ge 1$$

First few sequence are:

$$a_1 = 1 + 2 (1) = 3$$

 $a_2 = 1 + 2(3) = 7$
 $a_3 = 1 + 2(7) = 15$

Given initial conditions, $a_0 = 1$, $a_1 = 2$ and recurrence relation:

$$a_n = 3(a_{n-1} + a_{n-2}), n \ge 2$$

First few sequence are:

$$a_2 = 3(2+1) = 9$$

 $a_3 = 3(9+2) = 33$
 $a_4 = 3(33+9) = 126$

1, 2, 9, 33, 126, 477, 1809, 6858, 26001,...

For a photo shoot, the staff at a company have been arranged such that there are 10 people in the front row and each row has 7 more people than in the row in front of it. Find the recurrence relation and compute number of staff in the first 5 rows.

Solution:

Notice that the difference between the number of people in successive rows is a constant amount. This means that the n-th term of this sequence can be found using:

$$a_n = a_{n-1} + 7$$
, $n \ge 2$ with $a_1 = 10$

Number of staff in the first 5 rows:

$$a_1 = 10$$
,
 $a_2 = a_1 + 7 \Rightarrow 10 + 7 = 17$,
 $a_3 = a_2 + 7 \Rightarrow 17 + 7 = 24$,
 $a_4 = a_3 + 7 \Rightarrow 24 + 7 = 31$,
 $a_5 = a_4 + 7 \Rightarrow 31 + 7 = 38$.

10, 17, 24, 31, 38

Find a recurrence relation and initial condition for

1, 5, 17, 53, 161, 485, ...

Solution:

Look at the differences between terms:

4, 12, 36, 108, ...

the difference in the sequence is growing by a factor of 3.

13: DISCRETE STRU

Solution (cont'd):

However the original sequence is not.

$$1(3)=3, 5(3)=15,17(3)=51,...$$

1, 5, 17, 53, 161, 485, ...

It appears that we always end up with 2 less than the next term.

So, the recurrence relation is defined by:

$$a_n = 3(a_{n-1}) + 2$$
, $n \ge 1$, with initial condition, $a_0 = 1$

A depositor deposits RM10,000 in a savings account at a bank yielding 5% per year with interest compounded annually. How much money will be in the account after 30 years? Let P_n denote the amount in the account after *n* years.

Solution:

Derive the following recurrence relation:

$$P_n = P_{n-1} + 0.05P_{n-1} = 1.05P_{n-1}$$

Where, P_n = Current balance and P_{n-1} = Previous year balance and 0.05 is the compounding interest.

Solution (cont'd):

Initial condition, $P_0 = 10,000$. Then,

$$P_{1} = 1.05P_{0}$$

$$P_{2} = 1.05P_{1} = (1.05)^{2}P_{0}$$

$$P_{3} = 1.05P_{2} = (1.05)^{3}P_{0}$$
...
$$P_{n} = 1.05P_{n-1} = (1.05)^{n}P_{0}$$
,

now we can use this formula to calculate *n-th* term without iteration.

013: DISCRETE STRUCTI

Solution (cont'd):

Let us use this formula to find P_{30} under the initial condition $P_0 = 10,000$:

$$P_{30} = (1.05)^{30}(10,000) = 43,219.42$$

After 30 years, the account contains RM 43,219.42.

Exercise # 1

Consider the following sequence:

1, 5, 9, 13, 17

Find the recurrence relation that defines the above sequence.

Exercise # 2

A basketball is dropped onto the ground from a height of 15 feet. On each bounce, the ball reaches a maximum height 55% of its previous maximum height.

- a) Write a recursive formula, a_n , that completely defines the height reached on the n_{th} bounce, where the first term in the sequence is the height reached on the ball's first bounce.
- b) How high does the basketball reach after the 4th bounce? Give your answer to two decimal places.

RECURSIVE FUNCTION

Recursive Function

- Many functions are defined in such away that the value at one input is defined in terms of other values of the function.
- We call such function as recursive.
- A recursive function is a function that invokes/calls itself.
- A recursive algorithm is an algorithm that contains a recursive.
- Recursive is a way that can be used to solve a large class of problems.

Recursive Function (cont'd)

Factorial problem

$$n! = n (n - 1) (n - 2)....$$

Example:

$$7! = 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1$$

If
$$n \ge 1$$
, $n! = n(n-1)(n-2) \dots 2 \times 1$

Notice that, if $n \ge 2$, n factorial can be written as,

$$n! = n(n-1)!$$

Factorial problem (cont'd)

5!

$$4! = 4.3!$$

$$3! = 3.2!$$

Recursive Algorithm for Factorial

- Input: n, integer ≥ 0
- Output: n!

```
Factorial (n) {
     if (n=0)
           return 1
     return n*factorial(n-1)
```


Recursive Function (cont'd)

Fibonacci Sequence

Fibonacci sequence, f_n

$$f_1 = 1$$

 $f_2 = 1$ for
 $f_n = f_{n-1} + f_{n-2}$, $n \ge 3$

1, 1, 2, 3, 5, 8, 13,

Recursive Function (cont'd)

Recursive algorithm for Fibonacci Sequence:

```
Input: n
Output: f (n)
f(n) {
      if (n=1 \text{ or } n=2)
            return 1
      return f(n-1) + f(n-2)
```


Consider the following arithmetic sequence:

Suppose a_n is the term sequence. The generating rule is

$$a_n = a_{n-1} + 2$$
, for $n \ge 1$

The relevant recursive algorithm can be written as

```
f(n)
   \{ if (n = 1) \}
        return 1
     return f(n-1) + 2
```

Use the above recursive algorithm to trace n = 4.

Example-Solution

Trace the output if n = 4 <u>f</u>(4) f(4) = 7n = 4Because n≠1 return f(3) +2Return 5 +2 f(3) f(3) = 5n = 3Because n≠1 Return 3 +2 return f(2) +2 f(2) f(2) = 3n = 2Because n≠1 <u>return</u> f(1) +2 Return 1 +2 f(1) n = 1f(1) = 1Because n =1 return 1 Return 1

Answer = 7

Exercise # 3

Shira and Zul are purchasing a new house costing RM300,000 with a down payment of RM30,000 and a long-term mortgage. The unpaid balance is being financed at a monthly rate of 1.2% on the unpaid balance and a payment of RM2000 per month. Find a recurrence relation and an initial condition to determine the unpaid balance after *n* monthly payments.