

# CHAPTER 2

(Part 2)

**FUNCTIONS** 



## **Definition**

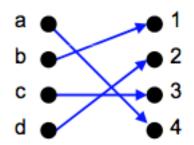
A function f from a set A to a set B is a relation with domain A and co-domain B that satisfies the following two properties:

- For every element x in A, there is an element yin **B** such that  $(x, y) \in f$ .
- For all element x in A and y and z in B,  $if(x,y) \in f$  and  $(x,z) \in f$ , then y = z



#### Relations vs Functions

- Not all relations are functions.
- But consider the following function:



All functions are relations.



#### Relations vs Functions (cont'd)

When to use which?

A function is used when you need to obtain a single result for any element in the domain.

Example: sin, cos, tan

A **relation** is when there are multiple mappings between the domain and the co-domain.

**Example:** students enrolled in multiple courses.





# Notation of Function: f(x)

If **A** and **B** are sets and f is a function from **A** to **B**, then given any element x in **A**, the unique element in **B** that is related to x by f is denoted f(x), which is read "f to x".

#### **Example:**

For the function,  $f = \{(1,a), (2,b), (3,a)\}$ 

We may write:

$$f(1) = a, f(2) = b, f(3) = a$$



Defined:  $f = \{(x, x^2) | x \text{ is a real number}\}$ 

$$- f(x) = x^2$$

$$f(2) = 4$$
,  $f(-3.5) = 12.25$ ,  $f(0) = 0$ 



## Domain, Co-domain, Range

A function from a set **X** to a set **Y** is denoted,  $f: \mathbf{X} \to \mathbf{Y}$ 

- The domain of f is the set X.
- The set  $\mathbf{Y}$  is called the co-domain or target of f.

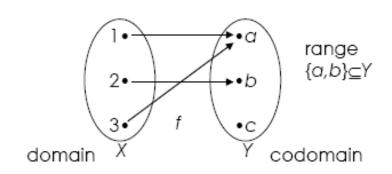
• The set  $\{y \mid (x, y) \in f\}$  is called the range.



Given the relation,  $f = \{(1,a), (2,b), (3,a)\}$  from  $X = \{1, 2, 3\}$  to  $Y = \{a, b, c\}$  is a function from X to Y. State the domain and range.

#### Solution:

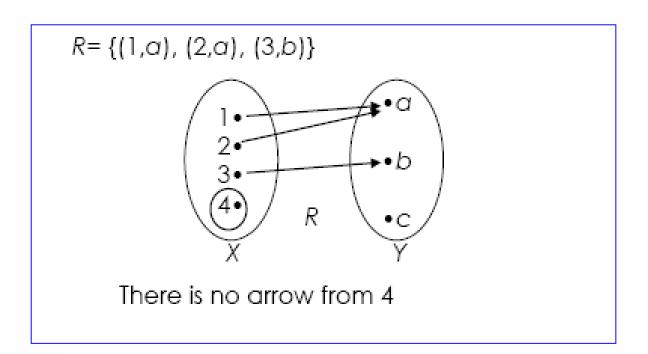
- $\checkmark$  The domain of f is X
- $\checkmark$  The range of f is  $\{a, b\}$





The relation,  $R = \{(1, a), (2, a), (3, b)\}$  from  $\mathbf{X} = \{1, 2, 3, 4\}$  to  $Y = \{a, b, c\}$  is NOT a function from X to Y.

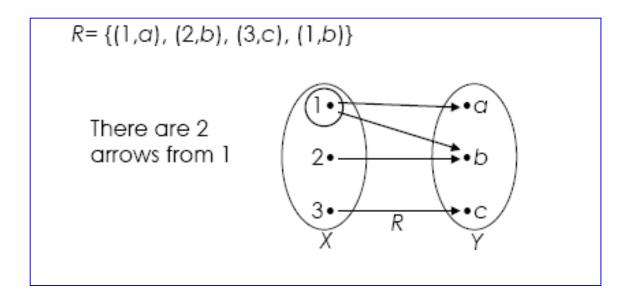
This is because the domain of R,  $\{1, 2, 3\}$  is not equal to X





The relation,  $R = \{(1, a), (2, b), (3, c), (1, b)\}$  from  $\mathbf{X} = \{1, 2, 3\}$  to  $Y = \{a, b, c\}$  is NOT a function from X to Y.

This is because (1, a) and (1, b) in R but  $a \neq b$ 





#### **One-to-One Function**

Let f be a function from a set  $\mathbf{X}$  to a set  $\mathbf{Y}$ . f is **one-to-one** (or injective) if, and only if, for all elements  $x_1$  and  $x_2$  in  $\mathbf{X}$ ,

if 
$$f(x_1) = f(x_2)$$
, then  $x_1 = x_2$ 

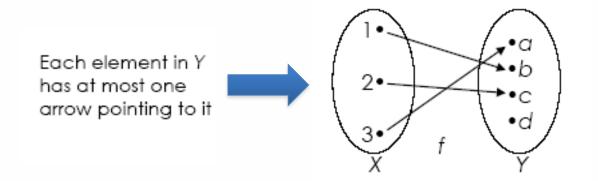
Or, equivalently, if  $x_1 \neq x_2$ , then  $f(x_1) \neq f(x_2)$ .

Symbolically,

 $f: X \to Y$  is one-to-one  $\Leftrightarrow$  " $x_1, x_2 \in X$ , if  $f(x_1) = f(x_2)$  then  $x_1 = x_2$ .



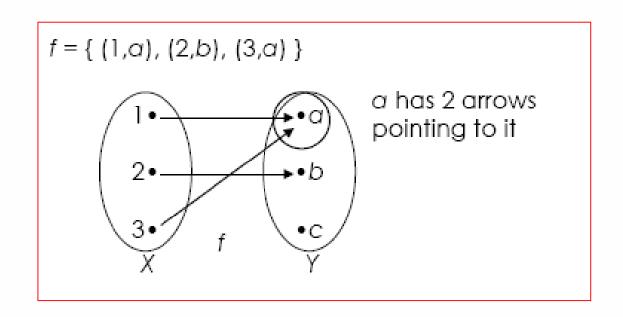
The function,  $f = \{(1,b), (3,a), (2,c)\}$  from  $\mathbf{X} = \{1, 2, 3\}$  to  $\mathbf{Y} = \{a, b, c, d\}$  is one-to-one.



In terms of arrow diagrams, a one-to-one function can be thought of as a function that separates points. That is, it takes distinct points of the domain to distinct points of the co-domain.



The function,  $f = \{(1,a), (2,b), (3,a)\}$  from  $\mathbf{X} = \{1, 2, 3\}$  to  $\mathbf{Y} = \{a, b, c\}$  is **NOT** one-to-one.





Show that the function,

$$f(n) = 2n + 1$$

on the set of positive integers is one-to-one.

#### **Solution:**

For all positive integer,  $n_1$  and  $n_2$  if  $f(n_1) = f(n_2)$ , then  $n_1 = n_2$ .

Let 
$$f(n_1) = f(n_2)$$
,  $f(n) = 2n + 1$ , then 
$$2n_1 + 1 = 2n_2 + 1 \qquad \dots (-1)$$
$$2n_1 = 2n_2 \qquad \dots (\div 2)$$
$$n_1 = n_2$$

This shows that f is one-to-one.



Show that the function,

$$f(n) = 2^n - n^2$$

on the set of positive integers is NOT one-to-one.

#### Solution:

Need to find 2 positive integers,  $n_1$  and  $n_2$ ,  $n_1 \neq n_2$  with  $f(n_1) = f(n_2)$ .

Trial and error, 
$$f(2) = f(4)$$

This shows that f is not one-to-one.

$$f(n) = 2^{n} - n^{2}$$

$$n = 2 \Rightarrow 2^{2} - 2^{2} = 0$$

$$n = 4 \Rightarrow 2^{4} - 4^{2} = 0$$



#### Onto Function

Let f be a function from a set  $\mathbf{X}$  to a set  $\mathbf{Y}$ . f is **onto** (or **surjective**) if, and only if, given any element y in Y, it is possible to find an element x in X with the property that y = f(x).

Symbolically,

 $f: X \to Y$  is onto  $\Leftrightarrow$  " $y \in Y, \$x \in X$  such that f(x) = y.



Let  $\mathbf{X} = \{1, 2, 3, 4\}$  and  $\mathbf{Y} = \{a, b, c\}$ . Define  $h: \mathbf{X} \rightarrow \mathbf{Y}$  as follows:

$$h(1) = c, h(2) = a, h(3) = c, h(4) = b.$$

Define  $k: \mathbf{X} \to \mathbf{Y}$  as follows:

$$k(1) = c, k(2) = b, k(3) = b, k(4) = c.$$

Is either *h* or *k* onto?

h is onto because each of the three elements of the co-domain of h is the image of some element of the domain of h.

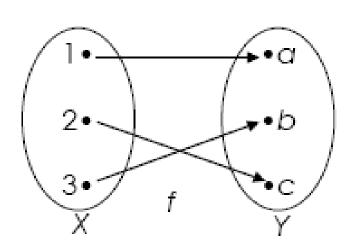
k is not onto because  $a^{-1}k(x)$  for any x in  $\{1, 2, 3, 4\}$ 



The function,  $f = \{(1,a), (2,c), (3,b)\}$  from  $\mathbf{X} = \{1, 2, 3\}$  to  $\mathbf{Y} = \{a, b, c\}$  is one-to-one and onto  $\mathbf{Y}$ .

$$\bullet$$
  $f = \{ (1,a), (2,c), (3,b) \}$ 

#### One-to-one Each element in Y has at most one arrow



#### Onto

Each element in Y has at least one arrow pointing to it



The function,  $f = \{(1,b), (3,a), (2,c)\}$  is not onto

$$Y = \{a, b, c, d\}$$

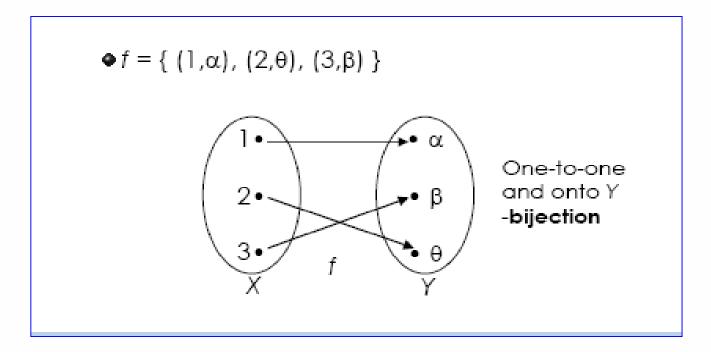
 $\bullet f = \{ (1,b), (3,a), (2,c) \}$ not onto no arrow pointing to d



## **Bijection Function**

A function, f is called one-to-one correspondence (or bijective/bijection) if f is both one-to-one and onto.

#### **Example:**





#### Exercise # 1

Determine which of the relations f are functions from the set X to the set Y. In case any of these relations are functions, determine if they are one-to-one, onto Y, and/or bijection.

a) 
$$\mathbf{X} = \{-2, -1, 0, 1, 2\}$$
,  $\mathbf{Y} = \{-3, 4, 5\}$  and  $f = \{(-2, -3), (-1, -3), (0, 4), (1, 5), (2, -3)\}$ 

b) 
$$\mathbf{X} = \{-2, -1, 0, 1, 2\}$$
,  $\mathbf{Y} = \{-3, 4, 5\}$  and  $f = \{(-2, -3), (1, 4), (2, 5)\}$ 

c) 
$$\mathbf{X} = \mathbf{Y} = \{-3, -1, 0, 2\}$$
 and  $f = \{(-3, -1), (-3, 0), (-1, 2), (0, 2), (2, -1)\}$ 



#### Exercise # 2

Let 
$$X = \{1, 2, 3\}, Y = \{1, 2, 3, 4\} \text{ and } Z = \{1, 2\}.$$

i) Define a function  $f: \mathbf{X} \to \mathbf{Y}$  that is one-to-one but not onto.

ii) Define a function  $g: \mathbf{X} \to \mathbf{Z}$  that is onto but not one-to-one.

iii) Define a function  $h: X \rightarrow X$  that is neither one-to-one nor onto.



#### Inverse Function

If f is a one-to-one correspondence from a set X to a set Y, then there is a function from Y to X that "undoes" the action of f (it sends each element of Y back to the element of X that it came from). This function is called the inverse function for f.



#### **Theorem**

Suppose  $f: \mathbf{X} \to \mathbf{Y}$  is one-to-one correspondence; that is, suppose f is one-to-one and onto. Then there is a function

 $f^{-1}: \mathbf{Y} \to \mathbf{X}$  that is defined as follows:

Given any element y in  $\mathbf{Y}$ ,  $f^{-1}(y) =$  that unique element x in  $\mathbf{X}$  such that f(x) = y.

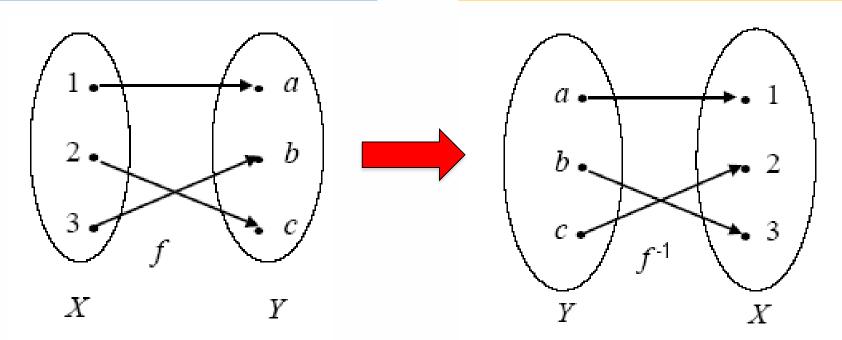
In other words,

$$f^{-1}(y) = x \Leftrightarrow y = f(x)$$



$$f = \{(1,a),(2,c),(3,b)\}$$

$$f^{-1} = \{(a,1),(c,2),(b,3)\}$$





The function,  $f: \mathbf{R} \to \mathbf{R}$  defined by the formula

$$f(x) = 4x - 1$$
 for all  $x \in \mathbf{R}$  (real number)

This function is both one-to-one. Find the inverse function.

#### Solution:

For any [particular but arbitrarily chosen] y in **R**, by definition of  $f^{-1}$ ,  $f^{-1}(y)$  = that unique real number x such that f(x) = y.

But,

$$f(x) = y$$

$$\Leftrightarrow 4x - 1 = y$$

$$\Leftrightarrow x = \frac{y + 1}{4}$$

Hence 
$$f^{-1}(y) = \frac{y+1}{4}$$



#### Exercise # 3

Find each inverse function:

a) 
$$f(x) = 4x + 2, x \in \mathbf{R}$$

b) 
$$f(x) = 3 + \frac{1}{x}, \quad x \in \mathbf{R}$$



# Composition

Suppose that g is a function from X to Y and f is a function from Y to Z.

The composition of f with g,  $f \circ g$  is a function

$$(f \circ g)(x) = f(g(x))$$

from **X** to **Z**.



## Composition (cont'd)

Composition sometimes allows us to decompose complicated functions into simpler functions.

#### **Example:**

$$f(x) = \sqrt{\sin 2x}$$
;  $g(x) = \sqrt{x}$ ;  $h(x) = \sin x$ ;  $w(x) = 2x$ 

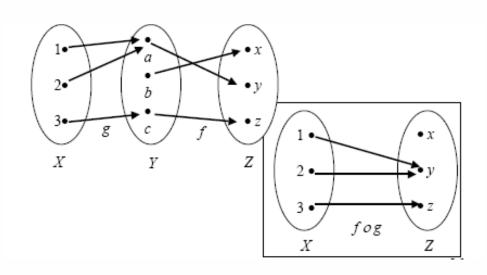
$$f(x) = g(h(w(x)))$$



Given,  $g = \{(1,a), (2,a), (3,c)\}$  a function from  $\mathbf{X} = \{1, 2, 3\}$  to  $\mathbf{Y} = \{a, b, c\}$ and  $f = \{(a, y), (b, x), (c, z)\}$  a function from **Y** to **Z** =  $\{x, y, z\}$ .

The composition function from X to Z is the function

$$f \circ g = \{(1, y), (2, y), (3, z)\}$$





Let,  $f(x) = \log_3 x$ , and  $g(x) = x^4$ . Find:

- a)  $f \circ g$
- b) *g* ∘ *f*

#### Solution:

a)  $f \circ g = f(g(x)) = \log_3(x^4)$ 

b)  $g \circ f = g(f(x)) = (\log_3 x)^4$ 

 $.: Note: f \circ g \neq g \circ f$ 



Define,  $f: \mathbb{Z} \to \mathbb{Z}$  and  $g: \mathbb{Z} \to \mathbb{Z}$  by the rules f(a) = 7a and  $g(a) = a \mod 5$  for all integers a.

#### Find:

- a)  $(g \circ f)(0)$
- b)  $(g \circ f)(1)$
- c)  $(g \circ f)(2)$
- $d) (g \circ f)(3)$
- *e*)  $(g \circ f)(4)$



### Exercise # 4

Define,  $f: \mathbb{Z} \to \mathbb{Z}$  and  $g: \mathbb{Z} \to \mathbb{Z}$  by the rules  $f(n) = n^3$ , g(n) = n-1for all integers n.

Find the compositions of the following:

- a) *f o f*
- b) *g o g*
- c) f o g
- d) g o f
- e) Is  $f \circ g = g \circ f$ ?