

CHAPTER 2

[Part 1]

RELATIONS

Relations on Sets

- The most basic relation is "=" (e.g. x = y)
- Binary relation is a subset of the Cartesian product of two sets.

Example: A and B are two sets. Define a relation R from A to B.

$$(x,y) \in \mathbf{A} \times \mathbf{B} \text{ and } R \subseteq \mathbf{A} \times \mathbf{B},$$

 $x R y \longleftrightarrow (x,y) \in R$

- ➤ If $(x,y) \in R$, where $x \in A$ and $y \in B$, can be written as: x R y => x is related to y.
- ➤ If $(x,y) \notin R$, where $x \in A$ and $y \in B$, can be written as: $x \not R y => x$ is not related to y.

Relations on Sets (cont'd)

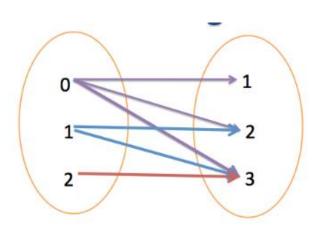
To show the relations, we can use one of the options:

i) Use traditional notation:

$$0 < 1, 0 < 2, 0 < 3, 1 < 2, 1 < 3, 2 < 3$$

ii) Use set notation: $R = \{(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)\}$

iii) Use arrow diagrams:



 $R=\{(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)\}$

Suppose that **A** and **B** be sets,

A = {Ipoh, Kangar, Johor Bahru, Kuala Terengganu, Kuantan, Dungun, Muar};

 $\mathbf{B} = \{\text{Terengganu}, \text{Johor}, \text{Perak}, \text{Perlis}, \text{Pahang}\}.$

If $a \in \mathbf{A}$, $b \in \mathbf{B}$, and the relation between a and b is defined as "a is the city in the state b". Then,

```
\mathbf{R} = \{(\text{Ipoh, Perak}), (\text{Kangar, Perlis}), (\text{Johor Bahru, Johor}), \}
       (Kuantan, Pahang), (Kuala Terengganu, Terengganu),
       (Dungun, Terengganu), (Muar, Johor) }.
```


A and B are sets.

$$\mathbf{A} = \{1, 2, 3, 4\}; \mathbf{B} = \{p, q, r\}.$$

Define a relation S from A to B as follows:

$$S = \{(1, q), (2, r), (3, q), (4, p)\}, \text{ and } S \subseteq \mathbf{A} \times \mathbf{B}$$

- i) Is 1 S q? Yes
- ii) Is 3 S p? No

Define a relation L from \mathbf{R} to \mathbf{R} as follows: For all real numbers x and y,

$$x L y \leftrightarrow x < y$$

- i) Is 57 L 53?
- ii) Is (-17) < -14?
- iii) Is 143 *L* 143?
- iv) Is (-35) *L* 1?

Solution:

- i) No, 57 > 53.
- ii) Yes.
- iii) No, 143 = 143.
- iv) Yes.

Define a relation R from Z to Z as follows: For all integer number m and n, $(m,n) \in \mathbb{Z} \times \mathbb{Z}$,

 $m R n \leftrightarrow m - n$ is even

- **i**) Is 4 R 0?
- ii) Is 2 R 6?
- iii) Is 3 R (-3)?
- iv) Is 5 R 2?
- List 5 integers that are related by R to 1. V)

Example - Solution:

- i) Yes, 4 0 = 4 (even).
- ii) Yes, 2 6 = -4 (even).
- iii) Yes, 3 (-3) = 6 (even).
- iv) No, 5 2 = 3 (odd).
- v) There are many such lists. One is
 - a) $1 R 1 \Rightarrow 1 1 = 0$
 - b) $3R1 \Rightarrow 3-1=2$
 - c) 5R1 = 5-1 = 4
 - d) -3 R 1 = -3 1 = -4

• • • • •

Domain & Range

Let R, a relation from \mathbf{A} to \mathbf{B} .

The domain of relations R is the set of all first elements in ordered pairs (a,b) which is the element of R, $\{a \in \mathbf{A} | (a, b) \in R \text{ for any } b \in \mathbf{B}\}\$

The range of relations R is the set of all second elements in ordered pairs (a,b) which is the element of R, $\{b \in \mathbf{B} | (a, b) \in R \text{ for any } a \in \mathbf{A}\}$

Let R be a relation on $\mathbf{X} = \{1, 2, 3, 4\}$ defined by $(x,y) \in R$ if $x \le y$, and $x,y \in \mathbf{X}$.

Then,

$$R = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}$$

The domain and range of **R** are both equal to **X**.

Let
$$\mathbf{X} = \{2, 3, 4\}$$
 and $\mathbf{Y} = \{3, 4, 5, 6, 7\}$

If we define a relation R from X to Y by,

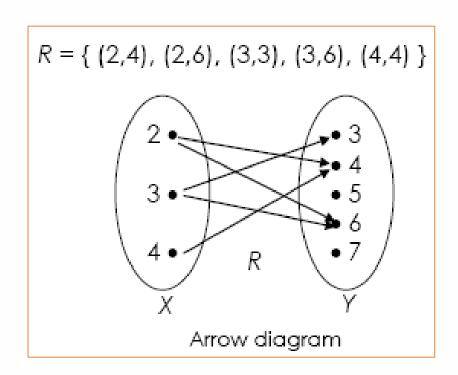
$$(x, y) \in R$$
 if $\frac{y}{x}$ (with zero remainder)

We obtain,

$$R = \{(2,4), (2,6), (3,3), (3,6), (4,4)\}$$

The **domain** of R is $\{2,3,4\}$

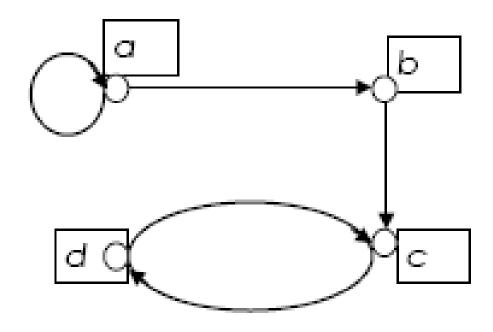
The **range** of R is $\{3,4,6\}$



Directed Graph

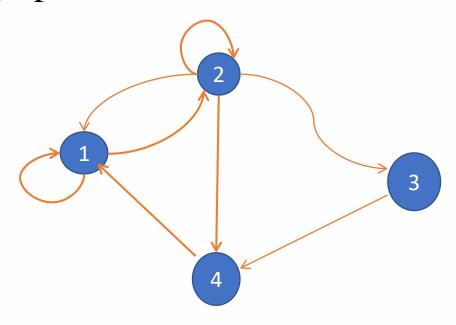
- An informative way to picture a relation on a set is to draw its directed graph (digraph)
- The steps are:
 - Let R be a relation on a finite set A.
 - o Draw dots (vertices) to represent the elements of A.
 - \circ If the element $(a,b) \in R$, draw an arrow (called a directed edge) from a to b.

The relation R on $A = \{a, b, c, d\}$, $R=\{(a,a),(a,b),(c,d),(d,c),(b,c)\}$

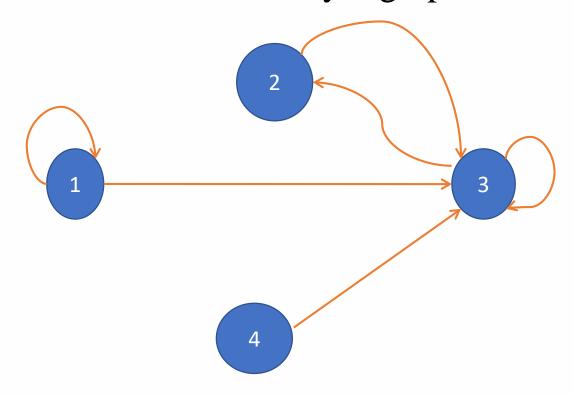


Let the relation
$$R$$
 on $\mathbf{A} = \{1,2,3,4\}$, $R = \{(1,1), (1,2), (2,1), (2,2), (2,3), (2,4), (3,4), (4,1)\}$

Draw the digraph of \mathbf{R} .



Find the relation determined by digraph below.



Answer: $R = \{(1,1), (1,3), (2,3), (3,2), (3,3), (4,3)\}$

Representing Relations Using Matrices

A relation is defined to be a set of pairs, but it can also be represented in other ways, e.g., by matrix.

- A matrix is simply a rectangular array of numbers.
- If a matrix has n rows and m columns, we call it an n x m matrix.
- In a matrix M, the number at the intersection of its *i*-th row and *j*-th column is written as M_{ii} .

Representing Relations Using Matrices (cont'd)

A matrix is a convenient way to represent a relation R from A to B.

- Label the rows with the elements of A (in some arbitrary order).
- Label the columns with the elements of **B** (in some arbitrary order).

Representing Relations Using Matrices (cont'd)

Let $A = \{a_1, a_2, ..., a_n\}$ and $B = \{b_1, b_2, ..., b_n\}$ be finite nonempty sets.

Let R be a relation from A into B.

Let $M_R = [m_{ii}]_{nxp}$ be the Boolean nxp matrix, where

$$m_{ij} = \begin{cases} 1 & \text{if } (a_i, b_j) \in R \\ 0 & \text{otherwise} \end{cases}$$

Representing Relations Using Matrices (cont'd)

$$\boldsymbol{M}_{R} = \begin{bmatrix} m_{11} & m_{12} & \dots & \dots & m_{1p} \\ m_{21} & m_{22} & \dots & \dots & m_{2p} \\ \vdots & \vdots & \dots & \ddots & \vdots \\ \vdots & \vdots & \dots & \ddots & \vdots \\ m_{n1} & m_{n2} & \dots & \dots & m_{np} \end{bmatrix}$$

Let
$$A = \{1, 3, 5\}$$
 and $B = \{1, 2\}$.

Let R be a relation from A to B, where

$$R = \{(1,1), (3,2), (5,1)\}.$$

Then the matrix represent *R* is:

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$

The relation,

$$R = \{ (1,b), (1,d), (2,c), (3,c), (3,b), (4,a) \}$$

from, $X = \{ 1, 2, 3, 4 \}$ to $Y = \{ a, b, c, d \}$

	а	b	\boldsymbol{c}	d		d	Ь	а	c
1 /	0	1	0	ì	2	Ó	0	0	1
2	0	0	1	0	3	0	1	0	1 1 0 0
	0				4	0	0	1	0
4	_1	0	0	9)	1	1	1	0	0

The matrix of the relation R from $\{2, 3, 4\}$ to { 5, 6, 7, 8 } defined by x R y if x divides y


```
Let A=\{a,b,c,d\}
Let R be a relation on A.
R = \{ (a,a), (b,b), (c,c), (d,d), (b,c), (c,b) \}
```


Let
$$A = \{1, 2, 3, 4\}$$
 and R is a relation on A .
Suppose $R = \{(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)\}$

What is R (represent)? $(x,y) \in R$ if y > x

ii) What is the matrix for R?

	_ 1	2	3	4 _	1
1		1	1	1	
2	0	0	1	1	
3	0	0	0	1	
4	0	0	0	0	

An airline services the five cities c_1 , c_2 , c_3 , c_4 and c_5 . Table below gives the cost (in dollars) of going from c_i to c_i . Thus the cost of going from c_1 to c_3 is \$100, while the cost of going from c_4 to c_2 is \$200

To	c_{I}	c_2	c_3	c_4	c_5
From					
c_1		140	100	150	200
c_2	190		200	160	220
c_3	110	180		190	250
c_4	190	200	120		150
c_5	200	100	200	150	

Example (cont'd):

If the relation R on the set of cities $A = \{c_1, c_2, c_3, c_4, c_5\}$: $c_i R c_j$ if and only if the cost of going from c_i to c_j is defined and less than or equal to \$180. Find R.

Answer:

$$R = \{(c_1, c_2), (c_1, c_3), (c_1, c_4), (c_2, c_4), (c_3, c_1), (c_3, c_2), (c_4, c_3), (c_4, c_5), (c_4, c_5), (c_5, c_2), (c_5, c_4)\}$$

In Degree and Out Degree

If R is a relation on a set A and $a \in A$, then the in-degree of a (relative to relation R) is the number of $b \in A$ such that $(b, a) \in R$.

The out degree of a is the number of $b \in A$ such that $(a, b) \in R$.

In terms of the digraph of R, is that the in-degree of a vertex is the number of edges terminating at the vertex.

The out-degree of a vertex is the number of edges leaving the vertex.

Let $A = \{a, b, c, d\}$, and let R be the relation on A that has the matrix (given below). Construct the digraph of R, and list in-degrees and out-degrees of all vertices.

$$M_R = \begin{bmatrix} a & b & c & d \\ a & 1 & 0 & 0 & 0 \\ a & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

Answer:

	a	b	c	d
In-degree	2	3	1	1
Out-degree	1	1	3	2

Exercises

Let $A = \{3,4,5\}$ and $B = \{2,4,6,8,10\}$ and R be the relation from **A** to **B** defined by,

$$(a,b) \in R$$
, if $2a \le b+1$

Write the ordered pair of R.

Find range and domain for:

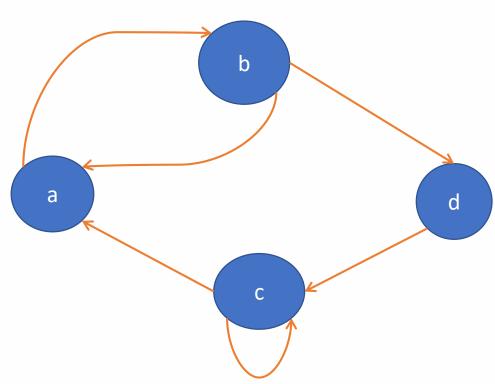
- (i) The relation $R = \{(1,2), (2,1), (3,3), (1,1), (2,2)\}$ on $X = \{1, 2, 3\}$
- (ii) The relation R on $\{1, 2, 3, 4\}$ defined by $(x, y) \in R \text{ if } x^2 \leq y$

Draw the digraph of the following relation.

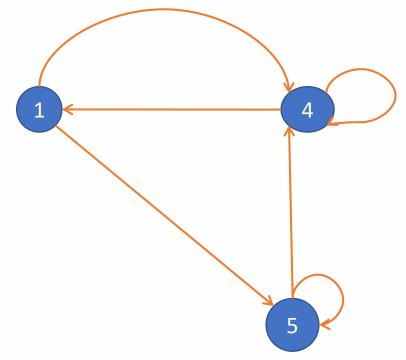
- $R = \{(a,6), (b,2), (a,1), (c,1)\}$
- (ii) The relation \mathbf{R} on $\{1, 2, 3, 4\}$ defined by $(x,y) \in \mathbf{R} \text{ if } x^2 \ge y$

Exercise #3 (cont'd)

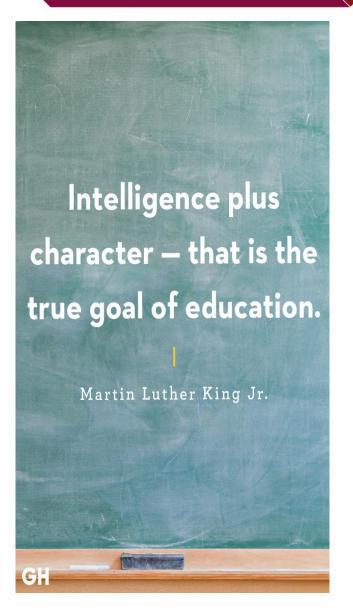
iii) Based on the digraph below, write the relation as a set of ordered pair.



Let $A = \{1, 4, 5\}$ and let R be given by the digraph shown below. Find M_R and R. Then, list the in-degree and the out-



Next..



Properties of Relations

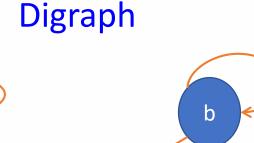
Reflexive Relations

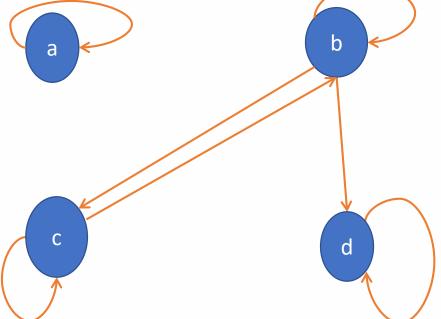
Let R be a relation on a set A. Then R is called **reflexive** if $(x,x) \in R$ for every $x \in A$. That is, x R x for all $x \in A$

The matrix of reflexive relation must have the value 1 on its diagonal.

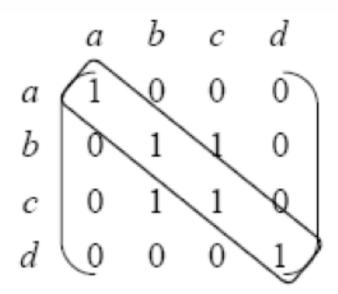
Digraph R will have a loop at every vertex.

Reflexive Relations (cont'd)





Matrix



The relation R on $\mathbf{X} = \{1, 2, 3, 4\}$ defined by $(x,y) \in R \text{ if } x \leq y, \ x,y \in \mathbf{X}$

Determine whether R is a reflexive relation.

Solution:

 $R = \{(1,1), (2,2), (3,3), (4,4)\}$

Since for each $x \in \mathbf{X}$, $(x,x) \in R$, thus R is a reflexive relation.

Irreflexive Relations

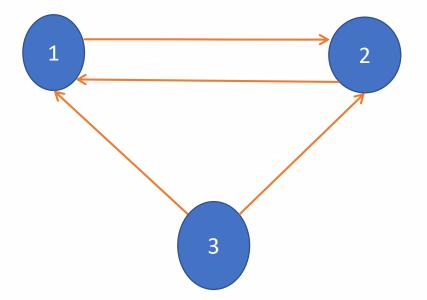
Let R be a relation on a set A. Then R is called **irreflexive** if $(x,x) \in \mathbb{R}$ for every $x \in A$.

The matrix of reflexive relation must have the value 0 on its diagonal.

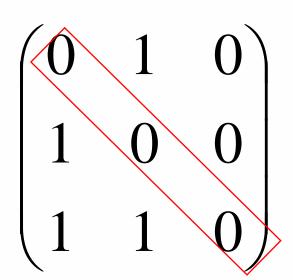
Digraph R will do not have loop at any vertex.

Irreflexive Relations (cont'd)

Digraph



Matrix



Not Reflexive Relations

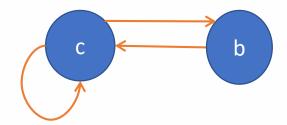
Let R be a relation on a set A. Then R is called **not reflexive** if there exist $(x,x) \in R$ for $x \in A$.

The matrix of reflexive relation will have the value **0** and **1** on its diagonal.

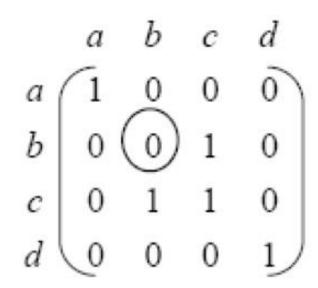
Digraph R will have some loop at some vertices.

Not Reflexive Relations (cont'd)

Digraph



Matrix



The relation $R = \{(a,a), (b,c), (c,b), (d,d)\}\$ on $X = \{(a,a), (b,c), (c,b), (d,d)\}\$ $\{a, b, c, d\}$ is not reflexive. Why?

Solution:

This is because $b \in \mathbf{X}$, but $(b,b) \notin R$.

Also $c \in \mathbf{X}$, but $(c,c) \notin R$.

Consider the following relations on the set $\{1, 2, 3\}$:

$$R_1 = \{(1,1), (1,2), (2,1), (2,2), (3,1), (3,3)\}$$

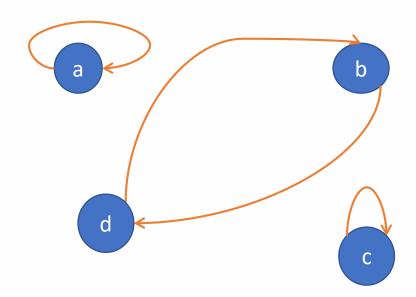
$$R_2 = \{(1,1), (1,3), (2,2), (3,1)\}$$

$$R_3 = \{(2,3)\}$$

$$R_4 = \{(1,1)\}$$

Which of them are reflexive?

The relation R on $X = \{a, b, c, d\}$ is shown on the digraph. Is *R* a reflexive relation? Justify your answer.



Let $A = \{1, 2, 3, 4\}$. Given R_i is a relation R on A. Construct a matrix for each R_i as follows. Then, determine whether the relation is reflexive, not reflexive or irreflexive.

- $R_1 = \{(1,1), (1,2), (2,1), (2,2), (3,3), (3,4), (4,3), (4,4)\}.$ (i)
- $R_2 = \{(1,1), (1,2), (1,3), (3,1), (3,3), (4,4)\}.$ (ii)
- (iii) $R_3 = \{(1,1), (1,2), (1,3), (1,4), (3,1), (3,2), (3,3), (3,4), ($ (4,2).
- (iv) $R_4 = \{(1,2), (1,3), (1,4), (3,2), (3,4), (4,2)\}.$

Symmetric Relations

A relation R on a set \mathbf{X} is called **symmetric** if **for all** $x,y \in \mathbf{X}$, if $(x,y) \in R$, then $(y, x) \in R$.

$$\forall x, y \in \mathbf{X}, (x,y) \in R \to (y,x) \in R$$

Let M be the matrix of relation R. The relation R is symmetric if and only if for all i and j, the ij-th entry of M is equal to the ji-th entry of M.

Symmetric Relations (cont'd)

The matrix of relation M_R is symmetric if $M_P = M_{PT}$

Example:

Symmetric Relations (cont'd)

The digraph of a symmetric relation has the property that whenever there is a directed edge from v to w, there is also a directed edge from w to v.

The relation $R = \{(a, a), (b, c), (c, b), (d, d)\}$ on $\mathbf{X} = \{a, b, c, d\}$

$$(b,c) \in R$$

 $(c,b) \in R$

symmetric

Antisymmetric

A relation R on set A is antisymmetric if $a \neq b$, whenever a R b, then b R a.

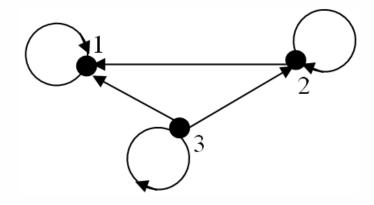
$$\forall a, b \in \mathbf{A}, (a,b) \in R \land a \neq b \rightarrow (b,a) \notin R$$
or

$$\forall a,b \in \mathbf{A}, (a,b) \in R \land (b,a) \in R \rightarrow a = b$$

Antisymmetric (cont'd)

- Matrix $M_R = |M_{ij}|$ of an antisymmetric relation R satisfies the property that if $i\neq j$, then $m_{ij}=0$ or $m_{ii}=0$
- If R is antisymmetric relation, then for different vertices i and jthere cannot be an edge from vertex i to vertex j and an edge from vertex j to vertex i, except i=j.
- In term of digraph, there is one directed relation and one way.

Let R be a relation on $A = \{1, 2, 3\}$ defined as $(a, b) \in R$ if $a \ge b$; $a, b \in \mathbf{A}$



This is an antisymmetric relation because for all $a, b \in \mathbf{A}$, $(a, b) \in R$ and $a \neq b$, then $(b, a) \notin R$.

Here, $(3, 2) \in R$ but $(2, 3) \notin R$, and $(3, 3) \in R$ implies a = b

The relation R on $\mathbf{X} = \{1, 2, 3, 4\}$ defined by, $(x, y) \in R \text{ if } x \leq y; x, y \in X$

$$(1,2) \in R$$

 $(2,1) \notin R$

The relation

$$R = \{ (a,a), (b,b), (c,c) \}$$

on $X = \{ a, b, c \}$

R has no members of the form (x,y) with $x\neq y$, then R is antisymmetric

Asymmetric

Let R be a relation on a set A. Then R is called asymmetric if $\forall a,b \in \mathbf{A}$, if $(a,b) \in R$, then $(b,a) \notin R$.

$$\forall a, b \in \mathbf{A}, (a,b) \in R \rightarrow (b,a) \notin R$$

- In this sense, a relation is asymmetric if and only if it is both antisymmetric and irreflexive
- The matrix $M_{R} = [m_{ij}]$ of an asymmetric relation R satisfies the property that,
 - $\checkmark \text{ If } m_{ii} = 1 \text{ then } m_{ii} = 0$
 - $\checkmark m_{ii} = 0$ for all i (the main diagonal of matrix M_R consists entirely of 0's or otherwise)

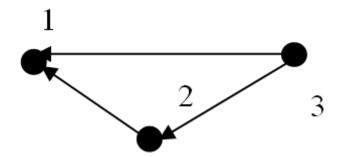
Asymmetric (cont'd)

If R is asymmetric relation, then the digraph of R cannot simultaneously have an edge from vertex i to vertex *j* and an edge from vertex *j* to vertex *i*.

- All edges are one way and no loop.
- $M_R \neq M_R^T$

Let R be the relation on $A = \{1, 2, 3\}$ defined by,

$$(a, b) \in R \text{ if } a > b; a,b \in A$$



This is an asymmetric relation because,

$$(2, 1) \in R \text{ but } (1, 2) \notin R$$

$$(3, 1) \in R \text{ but } (1, 3) \notin R$$

$$(3, 2) \in R \text{ but } (2, 3) \notin R$$

Not Symmetric

Let R be a relation on a set A.

Then R is called **not symmetric**, if for all $a, b \in A$, if $(a, b) \in R$, there exist $(b, a) \notin R$.

 $\exists a,b \in \mathbf{A}, (a,b) \in R \land (b,a) \notin R$

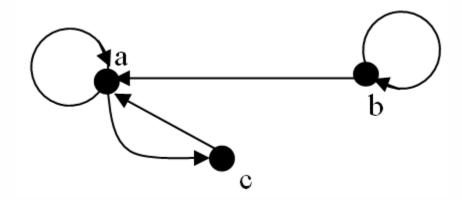
Not Symmetric and Not Antisymmetric

Let R be a relation on a set A. Then R is called **not** symmetric and not antisymmetric, if and only if

$$\exists a, b \in \mathbf{A}, (a, b) \in R \land (b, a) \notin R$$
AND

 $\exists a,b \in A, (a,b) \in R \land a \neq b \land (b,a) \in R$

Given a relation $R = \{(a, c), (b, b), (c, a), (b, a), (a, a)\}$ on $A = \{a, b, c\}.$



This relation is not symmetric and not antisymmetric relation because there is (a,c), $(c,a) \in R$ and also $(b,a) \in R$ but $(a,b) \notin R$

Let $A = \{1,2,3,4\}$ and let $R = \{(1,2), (2,2), (3,4), (4,1)\}$ is a relation R on A.

Determine the properties of R is either symmetric, asymmetric or antisymmetric.

Let A=Z, the set of integers and let,

$$R = \{(a,b) \in \mathbf{A} \times \mathbf{A} \mid a < b\}.$$

So that R is the relation "less than".

Is R symmetric, asymmetric or antisymmetric?

Let $A = \{1,2,3,4\}.$

For each question below (i - iii), construct the matrix of relation of R. Then, determine whether the relation is symmetric, asymmetric, not symmetric or antisymmetric.

(i)
$$R = \{(1,1), (1,2), (2,1), (2,2), (3,3), (3,4), (4,3), (4,4)\}$$

(ii)
$$R = \{(1,1), (1,2), (1,3), (3,1), (3,3), (4,4)\}$$

(iii)
$$R = \{ (1,1), (1,2), (1,3), (1,4), (3,2), (3,3), (3,4), (4,2) \}$$

Transitive Relations

A relation R on set A is transitive if for all $a,b,c \in A$, if (a,b) and $(b,c) \in R$, then $(a,c) \in R$

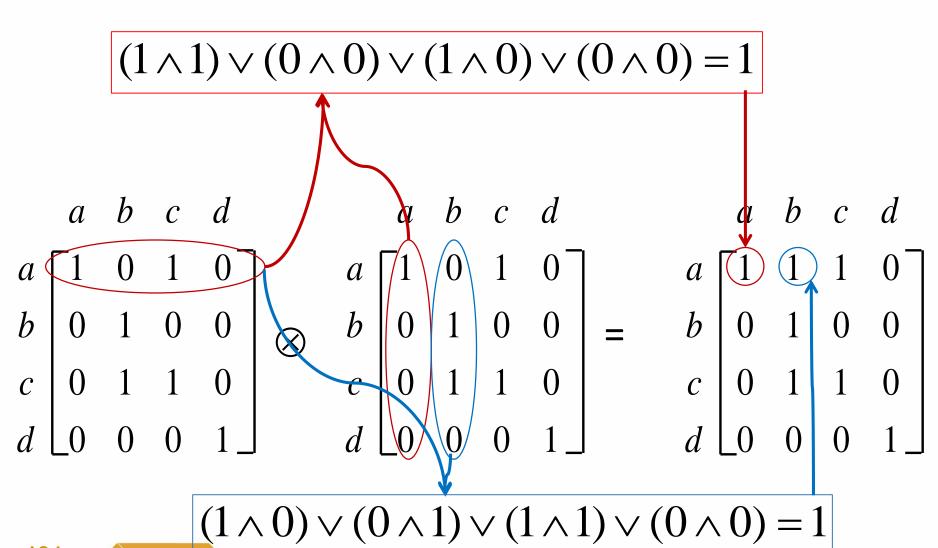
$$\forall (a,b) \in A, (a,b) \in R \land (b,c) \in R \rightarrow (a,c) \in R$$

Normally, the matrix of the relation M_R is transitive if

$$M_R \otimes M_R = M_R$$

⊗: product of Boolean

Product of Boolean



Consider the following relations on the set $\{1, 2, 3\}$:

$$R_1 = \{(1,1), (1,2), (2,3)\}$$

 $R_2 = \{(1,2), (2,3), (1,3)\}$

Which of them is transitive?

Solution:

 R_1 is not transitive because $(1, 2) \in R \land (2,3) \in R$, but $(1,3) \notin R$ R_2 is transitive because $(1, 2) \in R \land (2, 3) \in R \rightarrow (1,3) \in R$

 $M_R \otimes M_R \neq M_R$

Example:

The relation R on $A = \{a, b, c, d\}$ is $R = \{(a,a), (b,b), (c,c), (d,d), d\}$ (a,c),(c,b)} is not transitive. The matrix of relation M_R

The product of boolean,

Note that,(a,c) and $(c,b) \in R$, $(a,b) \notin R$

Let R be a relation on $A = \{1,2,3\}$ is defined by $(a,b) \in R$ if $a \leq b$; $a,b \in A$.

- Find *R*.
- ii) Is R a transitive relation?

Equivalence Relations

Relation R on set A is called an equivalence relation if it is a reflexive, symmetric and transitive.

Example:

Let $R = \{(1,1), (1,3), (2,2), (3,1), (3,3)\}$ on $\{1,2,3\}$, the matrix of the relation M_R ,

$$M_R = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 0 & 1 \\ 2 & 0 & 1 & 0 \\ 3 & 1 & 0 & 1 \end{bmatrix}$$

All the main diagonal matrix elements are 1, so it is reflexive.

Equivalence Relations (cont'd)

The transpose matrix M_R , M_R^T is equal to M_R , so R is symmetric.

$$M_{R} = \begin{bmatrix} 1 & 2 & 3 & & & & & & & & & & \\ 1 & 0 & 1 & 0 & 1 & & & & \\ 2 & 0 & 1 & 0 & 1 & & & & \\ 3 & 1 & 0 & 1 & & & & & \\ \end{bmatrix} \longrightarrow M_{R}^{T} = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

The product of Boolean show that the matrix is **transitive**.

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \oplus \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

Partial Order Relations

Relation R on set A is called a partial order relation if it is a reflexive, antisymmetric and transitive.

Example:

Let R be a relation on a set $A = \{1,2,3\}$ defined by $(a,b) \in R$ if $a \le b$, $a,b \in R$.

$$R = \{(1,1), (1,2), (1,3), (2,2), (2,3), (3,3)\}$$

Check each properties for partial order relations:

Reflexive: Since for each $x \in A$, $(x,x) \in R$, thus R is a reflexive relation.

Antisymmetric: Since for all $a, b \in A$, $(a, b) \in R$ and $a \neq b$, then $(b, a) \notin R$, thus R is antisymmetric.

Transitive: $(1, 2) \in R \land (2, 3) \in R \rightarrow (1,3) \in R$, thus R is transitive.

So, R is a partial order relation.