
SECR1213 Network Communications 15/11/2020

1

All material copyright 1996-2012
J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking: A Top Down Approach 6th Edition
Jim Kurose, Keith Ross

Addison-Wesley
March 2012

3-2

our goals:
v understand principles behind

transport layer services:
§ multiplexing,

demultiplexing
§ reliable data transfer (rdt)
§ flow control
§ congestion control

v learn about Internet
transport layer protocols:
§ UDP: connectionless

transport
§ TCP: connection-oriented

reliable transport
§ TCP congestion control

Transport Layer

SECR1213 Network Communications 15/11/2020

2

3-3

3.1 Transport-layer
services

3.2 Multiplexing and
Demultiplexing

3.3 Connectionless
transport : UDP

3.4 Principles of reliable
data transfer (rdt)

3.5 Connection-oriented
transport : TCP

• segment structure
• reliable data transfer
• flow control
• connection management

3.6 Principles of congestion
control

3.7 TCP congestion control

Roadmap:

Transport Layer

(3.1) Transport-Layer Services

v provide logical communication
between application processes
running on different hosts

v transport protocols run in
end systems / hosts :
§ send side: breaks app

messages into ________,
passes to network layer

v more than one transport
protocol available to apps
§ Internet: TCP and UDP

§ receive side:
reassembles _________
into messages, passes
to application layer

SECR1213 Network Communications 15/11/2020

3

v Transport layer:
v Logical communication

between ___________
§ relies on, enhances,

network layer services

12 kids in Ann’s house sending letters to 12 kids in Bill’s house:
v hosts = houses
v processes = kids
v application messages = letters in envelopes
v transport protocol = Ann and Bill who demux to in-house siblings
v network-layer protocol = postal service

Household analogy:

Transport Layer vs. Network Layer

v Network layer:
v Logical communication

between __________

Internet Transport Layer Protocols

v Reliable, in-order delivery (______):
§ connection setup
§ congestion control
§ flow control

v Unreliable, unordered
delivery (_______):
§ no-frills extension of
�best-effort� IP

§ Services not available:
• delay guarantees
• bandwidth guarantees

SECR1213 Network Communications 15/11/2020

4

handle data from multiple
sockets, add transport header
(later used for demultiplexing)

Multiplexing at sender:

(3.2) Multiplexing & Demultiplexing

Figure: Transport-layer multiplexing and demultiplexing

use header info to deliver
received segments to correct
socket

Demultiplexing at receiver:

(3.2) Multiplexing & Demultiplexing

http://www.eenadupratibha.net/pratibha/engineering/images/content_pics/content_three_Tra_layer_im2.JPG
3-8

Additio
n

Multiplexing at sender: Demultiplexing at receiver:

SECR1213 Network Communications 15/11/2020

5

3-9

v host receives datagrams :
§ each datagram has

üsource IP address
üdestination IP address

§ each datagram carries one
transport-layer _________

§ each segment has
üsource port number
üdestination port number

How it works?

Demultiplexing

Figure: TCP/UDP transport-layer
segment format

v host uses IP addresses & port
numbers to direct segment to
appropriate ________

3-10

v when host receives UDP
segment :
§ checks destination port #

in segment.
§ directs UDP segment to

socket with that port #

Datagrams with same
destination port #, but
different source IP addresses
and/or source port numbers
will be directed to same
socket at destination.

Demultiplexing
(a) Connectionless

v Recall: when creating
datagram to send into UDP
socket, it fully identified by
2-tuples:

– destination IP address
– destination port #

SECR1213 Network Communications 15/11/2020

6

Demultiplexing
Example: (a) Connectionless

Figure: The inversion of source and destination port numbers

(19157) (46428)

v TCP socket identified by
4-tuples:
§ source IP address
§ source port number
§ ___________________
§ ___________________

v Demux: receiver uses all
four values to direct
segment to appropriate
socket.

v server host may support
many simultaneous TCP
sockets:
§ each socket identified by

its own 4-tuples

v web servers have different
sockets for each connecting
client:
§ non-persistent HTTP will

have different socket for
each request

Demultiplexing
(b) Connection-Oriented

SECR1213 Network Communications 15/11/2020

7

Demultiplexing
Example: (b) Connection-Oriented

Figure: Two clients, using the same
destination port number 80 to

communicate with the same Web
server B application

HTTP session 1
HTTP session 2

HTTP session

Port 80

3-14

(3.3) Connectionless Transport:
UDP

v �no frills�, �bare bones�
Internet transport protocol

v �best effort� service,
UDP segments may be:
§ ____________________
§ ____________________

v UDP uses in:
§ streaming multimedia

applications (loss tolerant,
rate sensitive)

§ DNS
§ SNMP

UDP (User Datagram Protocol)
DNS (Domain Name Services)
SNMP (Simple Network Management Protocol)

v Reliable transfer over UDP:
§ add reliability at

application layer
§ application-specific error

recovery!

Connectionless:
§ No handshaking between

UDP sender, receiver
§ Each UDP segment

handled independently of
others

SECR1213 Network Communications 15/11/2020

8

3-15

v No connection
establishment (which can
add delay)

v Simple: no connection
state at sender, receiver

v Small header size
v No congestion control:

UDP can blast away as
fast as desired

Why is there a UDP?

UDP Segment Header

length, in bytes
of UDP segment,
including header

NFS (Network File System)
RIP (Routing Information Protocol)

Figure: Popular Internet applications and their underlying transport protocols

(a1) ________

(a2) ________

(a3) ________

(a4) ________

(b1) ________

(b2) ________

(b3) ________

(b4) ________

(b6) ________

(b5) ________

Try Yourself
Self-Test

SECR1213 Network Communications 15/11/2020

9

3-17

Sender:
v treat segment contents,

including header fields, as
sequence of 16-bit integers.

v Checksum: addition (one’s
complement sum) of
segment contents.

v sender puts checksum value
into UDP checksum field.

Receiver:
v compute checksum of

received segment.
v check if computed checksum
equals checksum field value:
§ NO - error detected
§ YES - no error detected.

But maybe errors
nonetheless? More later ….

UDP Checksum

Goal:
Detect �errors� (e.g., flipped bits) in

transmitted segment

3-18

0000 0100 0101 1011 à SUM

1st compliment:
1111 1011 1010 0100 à CHECKSUM

= FBA416

At the sender:

UDP Checksum
Calculation

1087 13

15 FBA4

SECR1213 Network Communications 15/11/2020

10

UDP Checksum
Calculation

1087 13

15 FBA4

0000 0100 0011 1111 à Source Port
+ 0000 0000 0000 1101 à Destination Port
+ 0000 0000 0000 1111 à Length
+ 1111 1011 1010 0100 à Checksum

1111 1111 1111 1111 All 1’s

At the receiver:

No Error !

3-19

Example: Add two 16-bit integers

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

Sum

Checksum
(1’s)

Wraparound

Note: When adding numbers, a carryout from the most
significant bit (MSB) needs to be added to the result

UDP Checksum
Calculation

(When Carryout Occurs)

1
1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

Hexadecimal = _____16

SECR1213 Network Communications 15/11/2020

11

3-21

50439 16397

15 Checksum

Application Data
(Payload)

Consider a sender host sends the
segment with some contents given.
Generate the checksum value.

Exercise 3.1

3-22

1287 13

15 7ADC16

Application Data
(Payload)

Consider a receiver host received the
segment with contents given, check if
any error occurred.

Exercise 3.2

SECR1213 Network Communications 15/11/2020

12

3-23

(3.4) Principles of Reliable
Data Transfer (rdt)

v important in application, transport, link layers
§ top-10 list of important networking topics!

v Characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

v In this section we will examine the exploitation of TCP in
many of the principles that we are about to describe.

Figure: Reliable data transfer (rdt)

Unreliable channel

SECR1213 Network Communications 15/11/2020

13

3-25

v Incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

v rdt protocol versions:
Ørdt1.0: reliable transfer over a reliable channel

vunderlying channel perfectly reliable
§ no bit errors.
§ no loss of packets.

v no need to provide feedback to sender.
v no need for the receiver to ask sender to slow down

sending rate.

Building a rdt Protocol

Ørdt2.0: channel with bit errors
Ørdt3.0: channels with bit errors and loss of packets.

unreliable channel

v Unreliable channel may flip bits in packet.
§ Checksum used to detect bit errors

rdt2.0: Channel with bit errors

Building a rdt Protocol

v New
mechanisms
in rdt2.0
(beyond
rdt1.0):

§ Error detection
§ Receiver Feedback: control messages

(ACK,NAK) from receiver to sender.
§ Retransmission: sender retransmits

packet on receipt of NAK.

.

Q: How to recover from errors?

Receiver explicitly tells sender
that packet received OK

Receiver explicitly tells sender
that packet had errors

SECR1213 Network Communications 15/11/2020

14

Sender will not sends new packet,
until receiver has received correct
packet.

rdt2.0: Channel with bit errors

3-27

What happens if ACK/NAK
corrupted?

v sender doesn’t know what

happened at receiver !
v can't just retransmit:

possible duplicates !

Handling duplicates:
v sender retransmits current

packet if ACK/NAK corrupted.
v sender adds ___

to each packet.
v receiver discards (doesn’t

deliver up) duplicate packet.

rdt2.0: Stop and Wait protocol
Sender sends one packet,
then waits for receiver’s
response.

Building a rdt Protocol

Fatal flaw!

3-28

New assumption:

Unreliable channel
can also loss packets
(data, ACKs)

v checksum,
sequence#, ACKs,
retransmissions
will be of help …
but not enough.

Approach:
Sender waits �reasonable�
amount of time for ACK.

v Retransmits if no ACK
received in this time.

v If packet (or ACK) just delayed (not lost):
§ retransmission will be ________, but

sequence #’s already handles this.
§ receiver must specify sequence # of

packet being ACKed.

v Requires countdown timer.

rdt3.0: Channel with errors and loss

Building a rdt Protocol

SECR1213 Network Communications 15/11/2020

15

Building a rdt Protocol

(a) Operation with no loss packet (b) Operation with loss packet

rdt3.0: Operations

rdt3.0: Operations

Building a rdt Protocol

(c) Operation with loss ACK (d) Operation with premature timeout

SECR1213 Network Communications 15/11/2020

16

rdt3.0: Operations

Building a rdt Protocol

rdt3.0: Alternating-bit protocol

Packet sequence# alternate between 0 and 1

v From previous 4 operations, rdt3.0 sometimes known as:

Question:
Supposed a sender has
3 packets to be sent to a
receiver.
a) Complete the

following figure by
writing down the best
answer for all S# and
R#. Assume that no
error after S1.

b) What are X and Y?
c) What is the problem

between S1 and S2?
d) Is the any discard

packet at receiver?
Why?

Sender Receiver
Send pkt0

………………
(S1)

rcv pkt0, send NAK0

………………
(S2)

……………
(R1)

Ti
m

eo
ut

 2

……………
(R2)

Y
(loss)

………………
(S4)

Ti
m

eo
ut

 1

X
(loss)

……………
(R3)

………………
(S3)

………………
(S5)

……………
(R4)

Exercise 3.3

SECR1213 Network Communications 15/11/2020

17

Example:

• Two hosts connected by a
channel with a transmission
rate, R, of 1Gbps;

• The RTT = 30 miliseconds;
• A host needs to transmit a

packet, L, 1000 bytes

v rdt3.0 is a functionally correct protocol, but the performance
is low;

v The performance problem is the fact that it is a ____________
protocol.

rdt3.0: Performance Problem

Building a rdt Protocol

dtrans =
L
R

 = 1000×8
1×109

 = 0.008 msec

Transmission delay:

RTT = 30 msec

Building a rdt Protocol

Usender =
L R

RTT + L R
=

0.008
30+ 0.008

= 0.000267 = 0.0267%

Utilization: (fraction of time sender busy sending)

Throughput =1Gbps×0.0267%= 267Kbps

Not fully utilize
the physical
resources!

(Stop-and-Wait Operation)

3-34

SECR1213 Network Communications 15/11/2020

18

3-35

v _________: sender allows multiple, �in-flight�, yet-to-be-
acknowledged packets.
§ Range of sequence # must be increased.
§ Buffering more than one packet at sender and/or

receiver.

Pipelined rdt Protocol

Figure: Stop-and-wait versus pipelined protocol

Solution

(Pipelined Operation)

Pipelined rdt Protocol

Utilization:

Usender =
3L R

RTT + L R
=

0.024
30+ 0.008

= 0.0008 = 0.08%

3-packet pipelining
increases utilization
by a factor of 3!

SECR1213 Network Communications 15/11/2020

19

3-37

Pipelined
Protocols

Figure: Two basic approaches of pipelined toward error recovery

Pipelined Protocols

Pipelined rdt Protocol

v The range of sequence # needed and the buffering
requirements depend on the manner in which a data
transfer protocol responds to:
§ lost, corrupted, and overly delayed packets.

3-38

Go-Back-N: Selective Repeat:

Pipelined rdt Protocol

v sender can have up to N unACKed packets in both pipeline protocol

v receiver only sends cumulative
ACK
§ doesn't ACK packet if there’s

a gap.

v sender has timer for oldest
unACKed packet.
§ when timer expires, retransmit
all unACKed packets.

v receiver sends individual
ACK for each packet.

v sender maintains timer for
each unACKed packet.
§ when timer expires,

retransmit only that
unACKed packet.

SECR1213 Network Communications 15/11/2020

20

v �window� size N and each k-bit has seq# in packet header.
v �window� of up to N, consecutive unACKed packets allowed.

ACK(n): ACKs all packets
up to, including seq#n -
�cumulative ACK�
v may receive duplicate

ACKs (see receiver).

Go-Back-N (GBN): Sender

Pipelined rdt Protocol

v timer for oldest in-flight packet
v timeout(n): retransmit

packet n and all higher seq#
packets in window.

= 14

3-39

3-40

0 1 2 3 4 5 6 7 8

Sender window (N=4)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

GBN: Operation

Pipelined rdt Protocol

X
(loss)

pkt2 timeout

discard

discard

discard

SECR1213 Network Communications 15/11/2020

21

2-41

Exercise 3.4

Suppose Host A and Host B use a Go-Back-N (GBN) protocol

with size N = 3 and a long-enough range of sequence numbers.

Assume Host A send six application messages to Host B and

that all messages are correctly received, except for the first

acknowledgment and the fifth data segment.

Draw a timing diagram, showing the data segments and the

acknowledgements sent along with the corresponding sequence

and acknowledge numbers, respectively.

(P19): page 321

Solution 3.4
Host A Host B

SECR1213 Network Communications 15/11/2020

22

3-43

v receiver individually acknowledges all correctly received
packets:
§ buffers packets, as needed, for eventual in-order

delivery to upper layer.

v sender only resends packets for which ACK not received
§ sender timer for each unACKed packet.

v sender window:
§ has N consecutive seq#’s.
§ limits seq#s of sent, unACKed packets (up-to �window

size N�) .

Selective Repeat (SR)

Pipelined rdt Protocol

SR

Pipelined rdt Protocol

Figure: Selective-Repeat (SR) sender and receiver
views of sequence-number space

= 14

= 14

3-44

SECR1213 Network Communications 15/11/2020

23

Data from above (application):
v if next available seq# in

window, send packet
timeout(n):
v resend packet n, restart timer
ACK(n) in

[send_base,send_base+N]
v mark packet n as received
v if n = send_base, move

forward window base to next
unACKed with smallest seq#

Sender
Packet n in
[rcv_base,rcv_base+N-1]
v send ACK(n)
v If out-of-order : buffer
v If in-order : deliver (also deliver

buffered, in-order packets),
forward window to next not-
yet-received packet

Packet n in
[rcv_base-N,rcv_base-1]
v ACK(n)
Otherwise: ignore the packet

Receiver
SR: Events and Actions

Pipelined rdt Protocol

3-45

3-46

SR: Operation

Pipelined rdt Protocol

X
(loss)

pkt2 timeout

3

Buffers:

4 5

3 4 5

SECR1213 Network Communications 15/11/2020

24

2-47

Exercise 3.5

Suppose Host A and Host B use a Selective Repeat (SR)
protocol with size N = 3 and a long-enough range of sequence
numbers.

Assume Host A send six application messages to Host B and
that all messages are correctly received, except for the first
acknowledgment and the fifth data segment.

Draw a timing diagram, showing the data segments and the
acknowledgements sent along with the corresponding sequence
and acknowledge numbers, respectively.

(P19): page 321

Solution 3.5
Host A Host B

SECR1213 Network Communications 15/11/2020

25

3-49

(3.5) Connection-Oriented Transport:
TCP

v Point-to-Point:
§ one sender, one receiver

v Reliable, in-order byte stream:
§ no �message boundaries�

Overview TCP

Figure: TCP send and receive buffers

v Pipelined:
§ TCP congestion and flow

control set window size

3-50

v Full-duplex data:
§ bi-directional data flow in same connection.
§ MSS: _______________________

§ Example:
File size = 500 Kb, MSS = 1 Kb, so TCP
construct 500 segments out of data stream.

Overview TCP

500Kb
1Kb

v Connection-Oriented:
§ handshaking (exchange of control messages)

inits sender, receiver state before data exchange.

v Flow controlled:
§ sender will not overwhelm receiver.

SECR1213 Network Communications 15/11/2020

26

3-51

Internet checksum
(as in UDP)

bytes
receiver
willing
to accept

counting
by bytes
of data
(not segments!)

TCP Segments Structure

URG: urgent data
(generally not used)

ACK: ACK # valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection

establishment
(setup, teardown

commands)

Sequence Number

Acknowledge Number

Sequence numbers (seq#):
byte stream �number� of first
byte in segment�s data.

Acknowledgements (ACK):
vseq# of next byte expected

from other side
vcumulative ACK

TCP Segments Structure

Sequence Number, ACKs

SECR1213 Network Communications 15/11/2020

27

TCP Segments Structure

Sequence Number, ACKs

Figure: Sequence and
acknowledgment numbers

for a simple Telnet
application over TCP

Host A Host B

Seq=42,ACK=79, data=‘C'

Seq=43, ACK=80

Seq=79
,ACK=4

3, dat
a=‘C’

3-54

Q: How to set TCP timeout
value?

v Longer than RTT:
§ but RTT varies.

v Too short: premature
timeout, unnecessary
retransmissions.

v Too long: slow reaction to
segment loss.

Q: How to estimate RTT?

v SampleRTT: measured time
from segment transmission
until ACK receipt.
§ ignore retransmissions.

v SampleRTT will vary, want
Estimated RTT �smoother�
§ average several recent

measurements, not just
current SampleRTT.

TCP Round-Trip Time (RTT), Timeout

SECR1213 Network Communications 15/11/2020

28

3-55

v TCP creates rdt service on
top of IP’s unreliable service
by implementing:
§ pipelined segments.
§ cumulative ACKs.
§ single retransmission timer

(refer to timer for oldest
in-flight packet).

Let’s initially consider
simplified TCP sender:
v ignore duplicate ACKs
v Ignore :

§ flow control,
§ congestion control

Duplicate ACK,
indicating seq# of next expected byte.

(Due to some reason expected seq# is
not received at receiver).

TCP Reliable Data Transfer (rdt)

v Retransmissions triggered by:
§ ______________.
§ duplicate ACKs.

3-56

TCP Reliable Data Transfer (rdt)

TCP Senders: Events and Actions

TCP Senders

Data received from
application above Timer Timeout ACK Receipt

3 major events related to data transmission and retransmission in
the TCP sender:

v Create segment with seq#.
v seq# is byte-stream number

of first data byte in segment.
v Start timer if not already running

§ think of timer as for oldest
unACKed segment.

§ expiration interval:
TimeOutInterval

v Retransmit segment
that caused timeout.

v Restart timer.

v if ACK acknowledges
previously unACKed
segments.

v update what is known
to be ACKed.

v start timer if there are
still unACKed
segments.

SECR1213 Network Communications 15/11/2020

29

(a) Lost ACK scenario

TCP Reliable Data Transfer (rdt)

Transmission Scenarios

(b) Premature timeout

seq=92
Timeout

interval

seq=92
Timeout

interval

Timeout

(c) Cumulative ACK

TCP Reliable Data Transfer (rdt)

Transmission Scenarios

seq=92
Timeout

interval

3-58

SECR1213 Network Communications 15/11/2020

30

3-59

Event

Arrival of in-order segment with
expected seq#. All data up to
expected seq# already ACKed

Arrival of in-order segment with
expected seq#. One other
segment has ACK pending.

Arrival of out-of-order segment
higher-than-expect seq#.
Gap detected

Arrival of segment that
partially or completely fills gap
(between seq#)

TCP receiver action

Delayed ACK. Wait up to 500ms
for next segment.
If no next segment, send ACK

Immediately send single cumulative
ACK, ACKing both in-order segments
(retransmit – use oldest timer).

Immediately send duplicate ACK,
indicating seq# of next expected byte
(TCP fast retransmit).

Immediate send ACK, provided that
segment starts at lower end of gap.

TCP Reliable Data Transfer (rdt)

ACK Generation

3-60

v Time-out period often relatively
long:
§ long delay before resending

lost packet.

v Detect lost segments via
duplicate ACKs:
§ sender often sends many

segments back-to-back.
§ if segment is lost, there will

likely be many duplicate ACKs.

If sender receives 3 ACKs
for same data
(�_______________ACKs�),
à resend unACKed

segment with smallest
seq#

§ likely that unACKed
segment lost, so:
don’t wait for timeout.

TCP fast retransmit

TCP Reliable Data Transfer (rdt)

Fast Retransmit

SECR1213 Network Communications 15/11/2020

31

Action:
• Immediately send

duplicate ACK.
• Indicating seq# of next

expected byte.

Event:
• Arrival of out-of-order

segment.
• higher-than-expect seq#.
• Gap detected.

TCP Reliable Data Transfer (rdt)

Fast Retransmit

Figure: TCP send and receive buffers

X

�triple duplicate ACKs�

application
process

TCP socket
receiver buffers

TCP
code

IP
code

application

OS

application may
remove data from

TCP socket buffers ….

… slower than TCP
receiver is delivering
(sender is sending)

from sender

receiver controls sender, so
sender won’t overflow
receiver’s buffer by
transmitting too much, too fast

Flow Control

TCP Flow Control

Figure: Receiver protocol stack

SECR1213 Network Communications 15/11/2020

32

buffered data

free buffer spacerwnd

RcvBuffer

TCP segment payloads

to application process
v receiver �advertises� free

buffer space by including
rwnd value in TCP header
of receiver-to-sender
segments
§ RcvBuffer size set via

socket options (typical
default is 4096 bytes)

§ many operating systems
auto adjust RcvBuffer

v sender limits amount of
unACKed (�in-flight�) data
to receiver�s rwnd value

v guarantees receive buffer
will not overflow Rwnd à received window free

buffer space

RcvBuffer à received buffer data

TCP Flow Control

Figure: Receiver-side buffering

Before exchanging data, sender/receiver �handshake�:
v Agree to establish connection (each knowing the other willing

to establish connection).
v Agree on connection parameters.

connection state: ESTAB
connection variables:

seq # client-to-server
server-to-client

rcvBuffer size
at server, client

application

network

connection state: ESTAB
connection Variables:

seq # client-to-server
server-to-client

rcvBuffer size
at server, client

application

network

Socket clientSocket =
newSocket("hostname","port number");

Socket connectionSocket =
welcomeSocket.accept();

Connection
set up

TCP Connection Management

SECR1213 Network Communications 15/11/2020

33

3-65

TCP Connection Management

Agreeing to Establish a Connection

Figure: TCP 3-way handshake: segment exchange

isn (Initial Sequence Number)

TCP State:TCP State:

3-66

TCP Connection Management

Agreeing to Establish a Connection

Figure: TCP 3-way handshake: segment exchange

isn (Initial Sequence Number)

(Example)

SYN=1,seqc=3

SYN=
1,se

qs=9
,ACK

c=4

SYN=0,seqc=4,ACKs=10

Client host Server host

SYN_SENT

ESTABLISHED

LISTEN

ESTABLISHED

SYN_RCVD

SECR1213 Network Communications 15/11/2020

34

3-67

v Client, server each close their side of connection
§ send TCP segment with FIN bit = 1.

v Respond to received FIN with ACK
§ on receiving FIN, ACK can be combined with own FIN

v Simultaneous FIN exchanges can be handled.

TCP Connection Management

Closing a Connection

TCP Connection Management

Closing a Connection

Figure: Closing a TCP connection

SECR1213 Network Communications 15/11/2020

35

TCP State:TCP State:

TCP Connection Management

Closing a Connection
(Example)

FIN=1,seqc=3

FIN=1,se
qs=9

FIN_WAIT_1

LAST_ACK

Client host Server host

ACK=1,AC
Kc=4

ACK=1,ACKs=10

FIN_WAIT_2

CLOSE_WAIT

TIME_WAIT

Figure: Closing a TCP connection

3-70

(3.6) Principles of Congestion Control

Congestion:
v Informally:

�too many sources sending too much data
too fast for network to handle�.

v Different from flow control!

v Manifestations:
§ Lost packets (buffer overflow at routers).
§ Long delays (queuing in router buffers).

v a top-10 problem!

SECR1213 Network Communications 15/11/2020

36

v No explicit feedback from
network.

v Congestion inferred from
end-system observed loss,
delay (e.g. from timeout,
duplicate ACK).

v Approach taken by TCP.

v Routers provide feedback to
end systems:
§ single bit indicating

congestion (as implemented
by SNA, DECbit, TCP/IP
ECN, ATM).

§ explicit rate for sender to
send at.

Approaches toward congestion control

Approaches

SNA (System Network Architecture)
ECN (Explicit Congestion Notification)

v sender limits transmission:

v cwnd is dynamic, function of
perceived (recognized) network
congestion

TCP sending rate:
v roughly: send cwnd

bytes, wait RTT for ACKs,
then send more bytes

LastByteSent- LastByteAcked < cwnd

rate ~~
cwnd
RTT

bytes/sec

(3.7) TCP Congestion Control
cwnd (Congestion Window)

LastByteAcked

LastByteSent

cwnd

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

SECR1213 Network Communications 15/11/2020

37

3-73

v There are generally THREE phases:

v Slow Start;

v Congestion Avoidance (CA);

v Loss event because of:
q _________________
q _________________

Overview

3-74

Major Components

Fast
Recovery

Figure: The components of TCP Congestion-Control algorithms

• Slow start and congestion avoidance are mandatory
components of TCP Congestion-Control algorithms

• different: how they increase the size of cwnd in
response to received ACKs.

SECR1213 Network Communications 15/11/2020

38

v When connection begins,
increase rate exponentially until
first loss event:
§ initially cwnd = 1 MSS
§ double cwnd every RTT
§ done by incrementing cwnd

for every ACK received

Summary:
v initial rate is slow but ramps up

exponentially fast.

TCP Slow Start &
Congestion Avoidance (CA)

MMS (Maximum Segment Size)
RTT (Round-Trip Time)

Figure: TCP slow start

3-76

Q: When should the
exponential increase
switch to linear?

Implementation:
v variable ssthresh (slow-start threshold)
v on loss event:

• ssthresh is set to 1/2 of cwnd just before loss event
• Value of cwnd is set to 1 MSS (slow start)

Congestion Avoidance

TCP Slow Start &
Congestion Avoidance (CA)

A: When cwnd gets to
1/2 of its value
before timeout.
(Congestion Avoidance)

Timeout

Slow Start

(Loss because of timeout)

SECR1213 Network Communications 15/11/2020

39

3-77

Figure: Switching from slow start to CA)

TCP Slow Start &
Congestion Avoidance (CA)

TR = Transmission Round
CW = Congestion Window
SS = Segment Send
ssthresh = Slow Start Threshold

TR 1 to 4
- Slow Start, Exponential growth, ssthresh=8

TR 4 = ssthresh is detected and Congestion
Avoidance (CA) starts

TR 5 to 8
- Operate at CA, Linear growth

Phase TR CW SS ssthresh

Slow
Start
(1)

1 1 1 8

2 2 3 8

3 4 7 8

4 8 15 8

CA

5 9 24 8

6 10 34 8

7 11 44 8

8 12 56 12 / 2 = 6

ssthresh

Timeout

(Loss because of timeout)

3-78

TCP Slow Start &
Congestion Avoidance (CA)

TR = Transmission Round
CW = Congestion Window
SS = Segment Send
ssthresh = Slow Start Threshold

(Loss because of timeout)

After TR 8
- Timeout is detected

TR 9 to 12 (refer table)
- CW=1, and ssthresh=6
- Start Slow, Exponential Growth

TR 12 to 15
- Operate at CA, Linear Growth

Timeout

Phase TR CW SS ssthresh

Slow
Start
(2)

9 1 57 6

10 2 59 6

11 4 63 6

12 6 69 6

CA
13 7 78 6

14 8 86 6

15 9 95 6

SECR1213 Network Communications 15/11/2020

40

3-79

Earlier version of TCP
(TCP ______________)
entered Slow start

Implementation:
v on loss event, ssthresh is set to 1/2 of cwnd just before

loss event
v cwnd is cut in half window then grows linearly

3 Duplicate ACKs

TCP Fast Recovery

(Loss because of 3 Duplicate ACKs)

Slow Start

Newer version of TCP
(TCP ______________)
incorporated fast
recovery

Fast
Recovery

3-80

TCP Fast Recovery

(Loss because of 3 Duplicate ACKs)

TR = Transmission Round
CW = Congestion Window
SS = Segment Send
ssthreshold = Slow Start Threshold

After TR 8 3DUP ACKs is detected

TR 9
à CW=6

TR 9,10 to 15

- Enters Fast Recovery
- Operate at CA
- Linear growth

TR CW SS ssthresh

9 6 62 6

10 7 69 6

11 8 77 6

12 9 86 6

13 10 96 6

14 11 107 6

15 12 119 6

TCP Reno

TR CW SS ssthresh

8 12 56 12 / 2 = 6

SECR1213 Network Communications 15/11/2020

41

v Loss indicated by timeout
or 3 duplicate ACKs :
(Slow Start)
§ cwnd set to 1 MSS;
§ window then grows
exponentially (as in slow
start) to threshold,
then grows linearly

TCP Tahoe

TCP Fast Recovery

Detecting, Reacting to Loss Events

v Loss indicated by ___________:
(Slow Start)
§ cwnd set to 1 MSS;
§ window then grows
exponentially (as in slow start)
to threshold, then grows linearly

v Loss indicated by _______________
(Fast Recovery)
§ dup ACKs indicate network capable
of delivering some segments
§ cwnd is cut in half window then
grows linearly

TCP Reno
TCP Tahoe

TCP Reno

Question:
Supposed host A connected to host B for transmitting segments
over TCP with congestion control.

Assume that the initial threshold is 6 MSS.

If the timeout event occurred at transmission round (TR=8), answer
the following questions:

Note: CW (Congestion Window), SS (Segment Send)

Exercise 3.6

a) Complete the table.

b) What is the new threshold after timeout?
c) What is/are the range of TRs involved in the congestion avoidance.

d) What is/are the range of TRs involved in the fast recovery?

e) At which TR the new threshold applied and how many segments
sent at that TR?

SECR1213 Network Communications 15/11/2020

42

TR CW SS
1
2
3
4
5
6
7
8
9
10
11
12
13
14

Note: CW (Congestion Window), SS (Segment Send)

Exercise 3.6

3-84

Additive Increase Multiplicative Decrease (AIMD)

v TCP congestion control often referred as AIMD
v Approach: sender increases transmission rate (window

size), probing for usable bandwidth, until loss occurs
§ ________________________: increase cwnd (congestion

window) by 1 MSS every RTT until loss detected
§ ________________________: cut cwnd in half after loss

cw
nd
:T

C
P

se
nd

er

AIMD saw tooth
behavior: probing

for bandwidth

additively increase window size …
…. until loss occurs (then cut window in half)

TCP Congestion Control:
Retrospective

MMS (Maximum Segment Size)
RTT (Round-Trip Time)

SECR1213 Network Communications 15/11/2020

43

3-85

v principles behind transport layer
services:
§ multiplexing, demultiplexing
§ reliable data transfer
§ flow control
§ congestion control

Next:
v leaving the network �edge� (application, transport layers)
v into the network �core�

Summary

