SECR1213 Network Communications 15/11/2020

ﬁui' EEditi

K urose, Keith Ross
Addison-Wesley
March 2012

Transport
Layer

All material copyright 1996-2012
J.F Kurose and K.W. Ross, All Rights Reserved

our goals:
. understand principles behind  « learn about Internet
transport layer services: transport layer protocols:
= multiplexing, = UDP: connectionless
demultiplexing transport
= reliable data transfer (rdt) = TCP: connection-oriented
= flow control reliable transport
= congestion control = TCP congestion control




SECR1213 Network C

ommunications

3.1 Transport-layer
services

3.2 Multiplexing and
Demultiplexing

3.3 Connectionless
transport : UDP

3.4 Principles of reliable
data transfer (rdt)

Roadmap:

3.5 Connection-oriented
transport : TCP

segment structure
reliable data transfer
flow control

connection management

3.6 Principles of congestion
control

3.7 TCP congestion control

K3
o

provide logical communication

between application processes

running on different hosts

transport protocols run in
end systems / hosts :

= send side: breaks app
messages into ]

33

= [ patalink

passes to network layer

Application

| Physical

Transport

Network

Data link

= receive side:

Physical

reassembles
into messages, passes
to application layer

« more than one transport

protocol available to apps
®» Internet: TCP and UDP

Data link

Physical

Network

Data link

Application

Transport

Network

Data link

Physical

15/11/2020



SECR1213 Network Communications

Transport Layer vs. Network Layer

+ Transport layer: + Network layer:
Logical communication Logical communication
between between

= relies on, enhances,
network layer services

Household analogy: I

12 kids in Ann’s house sending letters to 12 kids in Bill’s house:
- hosts = houses

. processes = kids

. application messages = letters in envelopes

+ transport protocol = Ann and Bill who demux to in-house siblings
+ network-layer protocol = postal service

3 Internet Transport Layer Protocols

o | _ 0 @
» Reliable, in-order delivery ( ): |

= connection setup ’
= congestion control
= flow control

+ Unreliable, unordered P

delivery () ==

Data link

n no_frllls extenS|0n of Physical
“best-effort” IP

= Services not available:

» delay guarantees
* bandwidth guarantees

Application
Transport

Network
Data link
Physical

15/11/2020



SECR1213 Network Communications

Multiplexing at sender: ——
handle data from multiple
sockets, add transport header
(later used for demultiplexing)

Demultiplexing at receiver:
use header info to deliver

received segments to correct
socket

/N
VAR
V4 N\
Application P, P, ) Application p& P, ) Application
|
Transport Transport Transport
Network Network Network
 —  —
Data link —— Data link = Data link
Physical Physical Physical
E J Key:

o

Figure: Transport-layer multiplexing and demultiplexing

O Process DSocke,

-
-

Multiplexing at sender:

Processes

Demultiplexing at receiver:

_

RERR (RRER
y v v v |+ ¢t ¢t ¢
Multiplexer / Demultiplexer

!

. |

<

ontent_three_Tra_layer_im2.JPG

3-8

15/11/2020



SECR1213 Network Communications

+ host receives datagrams :
= each datagram has
v'source IP address
v'destination IP address

= each datagram carries one
transport-layer

= each segment has
v'source port number
v'destination port number

- host uses IP addresses & port
numbers to direct segment to
appropriate

3 Demultiplexing

How it works?

32 bits
|

Source port # Dest. port #

Other header fields

Application
data
(message)

Figure: TCP/UDP transport-layer
segment format

3-9

Recall: when creating
datagram to send into UDP
socket, it fully identified by
2-tuples: N

3 Demultiplexing

(a) Connectionless

OO

— destination IP address

= directs UDP segment to
socket with that port # _

Sm——_———

— destination port #
B
+ when host receives UDP §‘.
segment : X
= checks destination port # .
in segment.

Datagrams with same
destination port #, but
different source IP addresses
and/or source port numbers
will be directed to same

socket at destination.
3-10

15/11/2020



SECR1213 Network Communications

Client process

%n %/ Socket
Host A ]

(46428)

Server B

source port:
19157
—=—

dest. port:
46428

N —

J

“—N\

source port:  dest. port:

46428 19157

Figure: The inversion of source and destination port numbers

3 Demultiplexing

Example: (a) Connectionless

« TCP socket identified by
4-tuples:
= source IP address
= source port number

- Demux: receiver uses all
four values to direct
segment to appropriate
socket.

« server host may support

many simultaneous TCP
sockets:

= each socket identified by

its own 4-tuples

1 .
«1 web servers have different
1 .
1 sockets for each connecting

| client:

| non-persistent HTTP will
. have different socket for
1
1
1

each request

3 Demultiplexing

(b) Connection-Oriented

15/11/2020



SECR1213 Network Communications

Demultiplexing

Example: (b) Connection-Oriented

Web client Web Per-connection
host C server B HTTP
processes

£ e
—— I—Transport-
source port:  dest. port: source port:  dest.port: |, . oq layer
80 2635 demultiplexing
source IP: dest. IP: source IP: dest. IP:
c B \ c B
Web client ‘HTTP session 1 y
host A k HTTP session 2 JJ

u HTTP session
; .

source port:  dest. port:
26145 80
source IP: dest. IP:
A B

Figure: Two clients, using the same
destination port number 80 to
communicate with the same Web
server B application

X3

S

X3

S

“no frills”,

bare bones”
Internet transport protocol

“best effort” service,
UDP segments may be:

— Connectionless:

= No handshaking between
UDP sender, receiver

= Each UDP segment
handled independently of
others

+ UDP uses in:

= streaming multimedia
applications (loss tolerant,
rate sensitive)

= DNS
= SNMP

+ Reliable transfer over UDP:

K3

= add reliability at
application layer

= application-specific error
recovery!

UDP (User Datagram Protocol)
DNS (Domain Name Services) 3-14
SNMP (Simple Network Management Protocol)

15/11/2020



SECR1213 Network Communications

3 UDP Segment Header

?
32 bits 2 ¢ ?
| o
I | JL
Source port # Dest. port # ) .
— Why is there a UDP?
* Length Checksum + No connection
establishment (which can
I icati dd del
Application a elay)
' (mg:‘s? o + Simple: no connection
: g state at sender, receiver
| « Small header size
. + No congestion control:
length, in bytes
of UDP segment, UDP can blast away as
including header fast as desired
3-15

Self-Test
Application-Layer Underlying Transport
Application Protocol Protocol
Electronic mail (a1) (b1)
Remote terminal access Telnet TCp
Web (a2) (b2)
File transfer (a3) (b3)
Remote file server NFS Typically UDP
Streaming multimedia typically propriefary (b4)
Intemet telephony typically propriefary (b5)
Network management SNMP Typically UDP
Routing protocol RIP Typically UDP
Name translation (a4) (b6)
Figure: Popular Internet applications and their underlying transport protocols
Rip Routing informtion Pratoca)

15/11/2020



SECR1213 Network Communications 15/11/2020

Goal:

Detect “errors” (e.g., flipped bits) in
transmitted segment

Sender: Receiver:

+ treat segment contents, + compute checksum of
including header fields, as received segment.
sequence of 16-bit integers. «» check if computed checksum

equals checksum field value:

- Checksum: addition (one’s = NO - error detected
complement sum) of = YES - no error detected.
segment contents.

+ sender puts checksum value But maybe errors
into UDP checksum field. nonetheless? More later ....

3-17

Calculation
32 bits At the sender:
|
! |
1087 13 00000100 00111111 —> 1087
00000000 00001101 ——> 13
15 FBA4 00000000 00001111 —> 15
w5 0000 0100 0101 1011 > SUM
I \
AppJIactaatlon 1st compliment:
(message) \ 111110111010 0100 > CHECKSUM
= FBA4 g
3-18




SECR1213 Network Communications

Calculation
32 bits At the receiver:
|
| |
1087 13 0000 0100 0011 1111 => Source Port
+ 0000 0000 0000 1101 - Destination Port
15 FBA4 + 0000 0000 0000 1111 > Length
+ 1111 1011 1010 0100 > Checksum
Application 1111 1111 1111 1111 All’s
data
(message)
No Error !
3-19
Calculation
. When Carryout Occurs
Example: Add two 16-bit integers ( y )
11 1 0 0 1 1 0 0 1 1 O 1 1 0
11 0 1 0 1 0 1 0 1 0 1 1 0 1
Wraparound
10 1 1 1 0 1 1 1 0 1 1 0 1 1
——————————————————— > 1
Sum 10 1 1 1 0 1 1 1 0 1 1 1 0 ©
Checksum 0 1 0 0 0 1 0 O O 1 o0 O 0o 1 1
(1's)
Hexadecimal = 16
Note: When adding numbers, a carryout from the most
significant bit (MSB) needs to be added to the result

15/11/2020

10



SECR1213 Network Communications 15/11/2020

50439 16397

Consider a sender host sends the

segment with some contents given. T
Generate the checksum value. -
Application Data
(Payload)

321

Consider a receiver host received the 1287
segment with contents given, check if

15 7ADC ¢
any error occurred.

Application Data
(Payload)

3-22

11



SECR1213 Network Communications 15/11/2020

+ important in application, transport, link layers
= top-10 list of important networking topics!

« Characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

« In this section we will examine the exploitation of TCP in
many of the principles that we are about to describe.

3-23

- Packet

L L
= =

Application
layer

Transport Reliable data Reliable data
layer transfer protocol transfer protocol
(sending side) (receiving side)
} 4
udt_send() - rdt_rcv() -
_________________________________________________ A
v r'\
Network
layer

[ | Unreliable channel

T T
a. Provided service b. Service implementation

Figure: Reliable data transfer (rdt)

12



SECR1213 Network Communications 15/11/2020

3 Building a rdt Protocol

+ Incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

. rdt protocol versions:
»rdt1.0: reliable transfer over a reliable channel I
“sunderlying channel perfectly reliable
= no bit errors.
* no loss of packets.
++ no need to provide feedback to sender.

< no need for the receiver to ask sender to slow down
sending rate.

» rdt2.0: channel with bit errors unreliable channel

»rdt3.0: channels with bit errors and loss of packets.

3-25

3 Building a rdt Protocol

rdt2.0: Channel with bit errors

- Unreliable channel may flip bits in packet.
= Checksum used to detect bit errors

Q: How to recover from errors?

C_C__

rdtl.0):

Receiver explicitly tells sender Receiver explicitly tells sender
that packet received OK that packet had errors

Q- " T=--- T TT T TT T T !
> New | Error detection :
rnechamsms "= Receiver Feedback: control messages |
inrdt2.0 ' (ACK, NAK) from receiver to sender. |
(beyond '+ Retransmission: sender retransmits |
1 |
1 I

packet on receipt of NAK.

13



SECR1213 Network Communications

+ can't just retransmit:
possible duplicates

response.

rdt2.0: Stop and Wait protocol

Sender sends one packet, | Sender will not sends new packet,
then waits for receiver’s until receiver has received correct

Building a rdt Protocol

o

G
¢ rdt2.0: Channel with bit errors

What happens if ACK/NAK Handling duplicates:
corrupted? + sender retransmits current
packet if ACK/NAK corrupted.
» sender doesn’'t know what = sender adds
happened at receiver ! to each packet.

+ receiver discards (doesn’t
! deliver up) duplicate packet.

packet.

3-27

New assumption:

Unreliable channel
can also loss packets
(data, ACKs)

s+ checksum,
sequence#, ACKS,
retransmissions
will be of help ...
but not enough.

3 Building a rdt Protocol

rdt 3. 0: Channel with errors and loss

Approach:

Sender waits “reasonable”
amount of time for ACK.

+» Retransmits if no ACK
received in this time.

- If packet (or ACK) just delayed (not lost):

= retransmission will be , but
sequence #'s already handles this.

= receiver must specify sequence # of
packet being ACKed.

» Requires countdown timer.

3-28

15/11/2020

14



SECR1213 Network Communications

Building a rdt Protocol

rdt3.0: Operations

Sender Receiver Sender Receiver

send pkt0 - . Pkto : send pkt0 | =~.Pkto
: _ rcv pkt0 - \ rcv pkt0
p¥®_~ © send ACKO : A/d*0 - send ACKO
rcv ACKO . :

- Pkty . rcv ACKO —: 7
send pktl . .

pktl . : send pktl| : ~—
- rev pktl

PCL\ - send ACK1

[/

\

rcv ACK1 - timeout

send pkto - ~Lkto . resend pktl - ktl\‘
. . rcv pkt0 . .

A . rcv pktl

»® ~ © send ACKO : A/d‘ " send ACK1
rcv ACK1 - .

ki

send pktO - Bkto
. . : c rcv pkt0
: . . A/(,\@ : send ACKO
v \ 4 . .

)

(a) Operation with no loss packet (b) Operation with loss packet

Building a rdt Protocol

rdt3.0: Operations

Sender Receiver Sender Receiver

N Je) . N
send pkto kto\’: send pkt0 : Pkto
:  rcv pkt0 . :
: o > . . rcv pkt0
: ‘/CV“ - send ACKO : p&"“ - send ACKO

W

rcv ACKO — «.Pkt7 : rcv ACKO -
send pktl| © \§ rov pktl send pktl [~ - Rkt :
: p¥\ - send AcK1 ) :\f rcv pktl
. / . timeout | : pg, © send ACK1
. (loss) X : resend pktl 7 P«d‘\ .
resezsmgizt © wPkty . :><j rev pkt 1
: \: rev ACKL ¢ pOL © (detect duplicate)
. oA > I(:Z‘;tle’]:t:l send pkt0 Zp>kt0<§ send ACK1
. [ . . .
: / ‘ duplicate) rcv ACK1 - * rev pkto
rcv ACKL - Pkto - send ACK1 do nothing - pe - send ACKO
send pktO0 - . : / :
: \ rcv pkt0 . .
: A/d& : send ACKO : :
v v v v

(c) Operation with loss ACK (d) Operation with premature timeout

15/11/2020

15



SECR1213 Network Communications 15/11/2020

3 Building a rdt Protocol

rdt3.0: Operations

+ From previous 4 operations, rdt 3.0 sometimes known as:

rdt3.0: Alternating-bit protocol

Packet sequence# alternate between 0 and 1

Sender Receiver
Question: Send pkt0 |
Supposed a sender has
3 packets to be sentto a
receiver. )
a) Complete the
following figure by
writing down the best
answer for all S# and
R#. Assume that no
error after S1.
b) What are X and Y?
c) Whatis the problem
between S1 and S27?
d) Is the any discard
packet at receiver?
Why?

1

1

1

1
rev pkt0, send NAKO

1

1

1

1

1

1

Timeout 1
P
[
8B :

Timeout 2

16



SECR1213 Network Communications

3 Building a rdt Protocol

rdt3.0: Performance Problem

+ rdt3.0 is a functionally correct protocol, but the performance
is low;

+ The performance problem is the fact that it is a

protocol.
Example:
Transmission delay:
» Two hosts connected by a I
channel with a transmission d,..
rate, R, of 1Gbps; R

¢ The RTT = 30 miliseconds;

¢ Ahost needs to transmit a
packet, L, 1000 bytes

3 Building a rdt Protocol

Sender Receiver (Stop-and-Wait Operation)

 — p —
First bit of first packet —

transmitted, t=0

Last bit of first packet
transmitted, t = L/R

— First bit of first packet arrives

RTT = 30 msec — Last bit of first packet arrives, send ACK

ACK arrives, send next packet,—=
t=RTT+L/IR

Utilization: (fraction of time sender busy sending
L/R 0.008

U, = - =0.000267 = 0.0267%
RTT +L/R  30+0.008

Throughput = 334

15/11/2020

17



SECR1213 Network Communications

acknowledged packets.

receiver.

Data packet
‘ I

a. A stop-and-wait protocol in operation

Pipelined rdt Protocol

Solution

@ : sender allows multiple, “in-flight”, yet-to-be-

1
1
1
1
» Range of sequence # must be increased. X
= Buffering more than one packet at sender and/or E

1

1

Figure: Stop-and-wait versus pipelined protocol 335

Sender

@
First bit of first packet

transmitted, t=0

Last bit of first packet ——
transmitted, t = L/R

RTT

ACK arrives, send next packet,

Receiver

Pipelined rdt Protocol

(Pipelined Operation)

— First bit of first packet arrives

— Last bit of first packet arrives, send ACK
— Last bit of 2nd packet arrives, send ACK
— Last bit of 3rd packet arrives, send ACK

t=RTT+ LR .
- 3-packet pipelining
increases utilization
by a factor of 3!
_____ Utilization:
_ 3LR v
sender RTT + L/R

15/11/2020

18



SECR1213 Network Communications

transfer protocol responds to:

3 Pipelined rdt Protocol

Pipelined Protocols

+ The range of sequence # needed and the buffering
requirements depend on the manner in which a data

= |ost, corrupted, and overly delayed packets.

Pipelined
Protocols
I

-

Figure: Two basic approaches of pipelined toward error recovery

3-37

Go-Back-N:

< sender can have up to N unAcked

» receiver only sends cumulative
ACK

» doesn't ACK packet if there’s
a gap.
» sender has timer for oldest
unACKed packet.

= when timer expires, retransmit
all unaCcKked packets.

3 Pipelined rdt Protocol

Selective Repeat:

packets in both pipeline protocol

+ receiver sends individual
ACK for each packet.

+ sender maintains timer for
each unAcKed packet.

= when timer expires,
retransmit only that
unACKed packet.

3-38

15/11/2020

19



SECR1213 Network Communications 15/11/2020

Pipelined rdt Protocol

Go-Back-N (GBN): Sender

+ “window” size N and each k-bit has seq# in packet header.
+ “window” of up to N, consecutive unACKed packets allowed.
base nextsegnum Key:
IAIrea‘dy I:l Usable,
------------------------- ACK'd not yet sent

Sent, not
I:lyel ACK'd U Not usable

Window size

N =14
ACK (n) : ACKs all packets + timer for oldest in-flight packet
up to, including seqi#n - « timeout (n):retransmit

“cumulative ACK” packet n and all higher seq#

+ may receive duplicate packets in window.

ACKSs (see receiver). 3-39

Pipelined rdt Protocol

Sender window (N=4) Sender Receiver GBN: Operation
EEY: 5678 sendpktog
rcv pkt0
0 12 3 ZENAS] send pktl : : send ACKO
: rev pktl
[ONIPCR4 567 8 send pkt2 : : send ACK1
(P} 5678 send pke3 :
(wait) .
: * rev pkt3, discard
© send ACK1
rcv ACKO
011 2 3 4 FHA:] send pked
rcv ACK1 *
[\Rl2 3 45 W& send pkt5 : * rev pke4, discard
- . send ACK1l
l— pkt2 timeout s
(Ul 2 3 4 5 &) send pkt2 : rev pkts, discard
(WMl 2 345 ] send pkt3 . send ACK1
Rl 3 4 5 XA PR BVEL 5 :
o send pkt5 ‘ rev pkt2, deliver
01PN 7 8 * send AcK2
g . rev pkt3, deliver
/ send ACK3 3-40
v v

20



SECR1213 Network Communications 15/11/2020

Suppose Host A and Host B use a Go-Back-N (GBN) protocol
with size N = 3 and a long-enough range of sequence numbers.

Assume Host A send six application messages to Host B and
that all messages are correctly received, except for the first
acknowledgment and the fifth data segment.

Draw a timing diagram, showing the data segments and the
acknowledgements sent along with the corresponding sequence
and acknowledge numbers, respectively.

(P19): page 321

2-41

Host A Hos!

21



SECR1213 Network Communications

3 Pipelined rdt Protocol

Selective Repeat (SR)

- receiver individually acknowledges all correctly received
packets:

» buffers packets, as needed, for eventual in-order
delivery to upper layer.

+ sender only resends packets for which ACK not received
= sender timer for each unACked packet.

+ sender window:
= has N consecutive seg#’s.
* limits seq#s of sent, unACKed packets (up-to “window
size N”) .

343

3 Pipelined rdt Protocol

send_base nextsegnum S R
] |
1 Already Usable,
: o ACK'd not yet sent
 Window size
| =
. ! =1 |:|Sent, not |:| Not usable
a. Sender view of sequence numbers yet ACK'd

Key:

Out of order Acceptable
(buffered) but (within

LA R EZLZZZZQ‘:I’

yet received |:| Not usable

rcv_base

Window size
N=14

b. Receiver view of sequence numbers

Figure: Selective-Repeat (SR) sender and receiver

views of sequence-number space 344

15/11/2020

22



SECR1213 Network Communications

Sender

Data from above (application):
+ if next available seqg# in

window, send packet
timeout (n):

R

+ resend packet n, restart timer
ACK (n) in

[send base, send base+N]
» mark packet n as received
» ifn= send base, move
forward window base to next
unACKed with smallest seqg#

3

Pipelined rdt Protocol

SR: Events and Actions
Receiver

Packet n in

[rcv _base,rcv _base+N-1]

» send ACK (n)

I out-of-order : buffer

+ If in-order : deliver (also deliver
buffered, in-order packets),
forward window to next not-
yet-received packet

Packet n in

[rcv _base-N, rcv base-1]

« ACK (n)

Otherwise: ignore the packet
3-45

3
ot

3
ot

Sender

pkt0 sent
0123456789

pktl sent
0123456789

— pkt2 sent
0123456789

pkt3 sent, window full
0123456789
ACKO rcvd, pkté4 sent

0123456789

ACK1 rcvd, pkt5 sent
0123456789

L pkt2 timeout pkt2
resent

0123456789

ACK3 rcvd, nothing sents
0123456789

. pkt0 rcvd, delivered, ACKO sent
20123456789

pktl revd, delivered, ACKL sent
10123456789

pkt3 rcvd, buffered, ACK3 sent
©0123456789

© pkt4 revd, buffered, ACK4 sent
101234567809

E pkt5 rcvd; buffered, ACK5 sent
01234567809

Pipelined rdt Protocol

Receiver SR Operation

Buffers:

[F]]E]

3-46

15/11/2020

23



SECR1213 Network Communications 15/11/2020

Suppose Host A and Host B use a Selective Repeat (SR)
protocol with size N = 3 and a long-enough range of sequence
numbers.

Assume Host A send six application messages to Host B and
that all messages are correctly received, except for the first
acknowledgment and the fifth data segment.

Draw a timing diagram, showing the data segments and the
acknowledgements sent along with the corresponding sequence
and acknowledge numbers, respectively.

(P19): page 321

2-47

Host A Host B .
- Solution 3.5

24



SECR1213 Network Communications

Overview TCP
+ Point-to-Point:
= one sender, one receiver
- Reliable, in-order byte stream: « Pipelined:
* no “message boundaries” = TCP congestion and flow

control set window size

Process Process
writes data reads data

Socket Socket
TCP I Segment l Segment TCP

send receive
buffer buffer

Figure: TCP send and receive buffers 349

Overview TCP
- Full-duplex data:
= bi-directional data flow in same connection. 500Kb

= Example:
File size = 500 Kb, MSS = 1 Kb, so TCP
construct 500 segments out of data stream.

s+ Connection-Oriented:

= handshaking (exchange of control messages)
inits sender, receiver state before data exchange.

+ Flow controlled:

= sender will not overwhelm receiver.
3-50

15/11/2020

25



SECR1213 Network Communications

URG: urgent data
(generally not used)

TCP Segments Structure

32 bits
|

ACK: ACK # valid

PSH: push data now
(generally not used)

Source port #

Dest port #
Sequence number

Acknowledgment number

¥
RST, SYN, FIN: | (oot unused (2 F 55 2 Receive window
connection )
. Internet checksum Urgent data pointer
establishment # butes
(setup, teardown rec)t;iver
commands) Options willing
to accept
Data

Internet checksum
(as in UDP)

3-51

counting

by bytes

of data

(not segments!)

TCP Segments Structure

Source port #

Header
length Unused 5 E g 5 GE

Internet checksum

base

Dest port #

Sequence Number -I

Acknowledgment number

Sequence numbers (seg#):

byte stream “number” of first
byte in segment’ s data.

Receive window

Urgent data pointer

nextseqnum Key:

IIIIIIEDHDUUUDDDDDD[UUDDDDD e

Already

yet AC

I
|
|
L_

Window size
N

Source port # Dest port #

Sequence number

Sequence Number, ACKs

Usable,
not yet sent

Not usable

Acknowledgements (ACK):

Acknowledge Number

Header T2z
length Unused K LexE

from other side
«cumulative ACK

Receive window

Internet checksum Urgent data pointer

+seqg# of next byte expected

15/11/2020

26



SECR1213 Network Communications

3 TCP Segments Structure

Host A Host B Sequence Number, ACKs

B

—

z

—

Se
User types 9=42
o 'ACK<79
’ data> ey
Host ACKs

C
receiptof 'c’,

=C' hoes back "¢
3atd” echoes back 'c

2oa=a3, ack
=80 .
Figure: Sequence and
acknowledgment numbers

for a simple Telnet
application over TCP

Time Time
3 TCP Round-Trip Time (RTT), Timeout
Q: How to set TCP timeout Q: How to estimate RTT?
value?
. Longer than RTT: + SampleRTT: measured time

from segment transmission
until ACK receipt.

= jgnore retransmissions.

= but RTT varies.

« Too short: premature

timeout, unnecessary _

Estimated RTT “smoother”
= average several recent

measurements, not just
current SampleRTT.

+ Too long: slow reaction to
segment loss.

15/11/2020

27



SECR1213 Network Communications 15/11/2020

3 TCP Reliable Data Transfer (rdt)

+» TCP creates rdt service on ‘

top of IP’s unreliable service Let's initiall id
by implementing: et’s initially consider

g simplified TCP sender:

= pipelined segments. , .
I PIP ) 9 + ignore duplicate ACKs
= cumulative ACKs. |
+ Ignore :

1
1
! l
. .. . |
. = single retransmission timer ! - e il
1
1
l :

24

24

I(r:elrlfgrl‘;[?[;uanc]igtf)o roldest = congestion control

- ————— o — - - ———

: Duplicate ACK,
! indicating seq# of next expected byte.

e o o e e = - - - — -

(Due to some reason expected seg# is
not received at receiver).

TCP Reliable Data Transfer (rdt)

TCP Senders: Events and Actions

3 major events related to data transmission and retransmission in
the TCP sender:

' TCP Senders

e Receipt

Data received from
application above

Create segment with seq#.  + Retransmit segment + if ACK acknowledges
seqt# is byte-stream number that caused timeout. previously unacked
of first data byte in segment. « Restart timer. segments. .
Start timer if not already running update what is known
. . to be ACKed.
= think of timer as for oldest ) .
unACked segment. start timer if there are
e still unacked
= expiration interval: seagments
TimeOutInterval 9 : 3-56

28



SECR1213 Network Communications

TCP Reliable Data Transfer (rdt)

Transmission Scenarios

Host A Host B

Host A Host B

|
—
. Seg=g .
. 2 .
: 8 bytes g, :
. a .
seqg=92

—

=

Ti t N N Timeout _]
imeou yi interval
: X : :

. (loss) N N

53q=92 .

: s 8 b}'tes data : .

. . seq=92 .

Timeout

. . interval | :

Time Time

v v
Time Time
(a) Lost ACK scenario (b) Premature timeout

TCP Reliable Data Transfer (rdt)

Transmission Scenarios

Host A Host B
[——2tgs92,

—~Seam100, :
P X Ttes dagy
seq=92 . (loss) .
Timeout - - .
interval %

Time Time

(c) Cumulative ACK 3-58

15/11/2020

29



SECR1213 Network Communications

3 TCP Reliable Data Transfer (rdt)

Event

ACK Generation

TCP receiver action

Arrival of in-order segment with
expected seq#. All data up to
expected seq# already ACKed

Delayed Ack. Wait up to 500ms

for next segment.
If no next segment, send ACK

Arrival of in-order segment with
expected seqg#. One other
segment has ACK pending.

Immediately send single cumulative
ACK, ACKing both in-order segments

(retransmit — use oldest timer).

Arrival of out-of-order segment
higher-than-expect seq#.
Gap detected

Immediately send duplicate ACK,
indicating seq# of next expected byte
(TCP fast retransmit ).

Arrival of segment that
partially or completely fills gap
(between seq#)

Immediate send ACK, provided that
segment starts at lower end of gap.

3-59

3 TCP Reliable Data Transfer (rdt)

» Time-out period often relatively

long:

= long delay before resending

lost packet.

Detect lost segments via
duplicate ACKs:

Fast Retransmit

— TCP fast retransmit

If sender receives 3 ACKs

for same data

(“ ACKs”),

- resend unACKed
segment with smallest
seq#

= sender often sends many
segments back-to-back.
= if segment is lost, there will

likely be many duplicate ACKs.

= likely that unACKed
segment lost, so:
don’t wait for timeout.

3-60

15/11/2020

30



SECR1213 Network Communications

Host A Host B

ack=100
ack=100
ack=100

Timeout

Time Time

TCP Reliable Data Transfer (rdt)

Fast Retransmit

Event:

* Arrival of out-of-order
segment.

* higher-than-expect seqg#.

» Gap detected.

Action:

* Immediately send
duplicate ACK.

* Indicating seg# of next
expected byte.

Figure: TCP send and receive buffers

TCP socket buffers

Flow Control
receiver controls sender, so
sender won’t overflow
receiver’s buffer by
transmitting too much, too fast

application ‘
application may process

remove data from -

... Slower than TCP
receiver is delivering ——
(sender is sending)

TCP Flow Control

] fcati
t]
- application
TCP socket 0s
recelve?t\auffers
TCP
code

P

code 5
w0 S

1 \ 1
from sender|

Figure: Receiver protocol stack

15/11/2020

31



SECR1213 Network Communications

TCP Flow Control

+ receiver “advertises” free
buffer space by including
rwnd value in TCP header I'i.‘l

ver-ta. 2
of receiver-to-sender RevBuffer buffered data

|

: to application process

|

|

:
segments :

-1

:

|

|

1

|

|

|

= RcvBuffer size setvia
socket options (typical
default is 4096 bytes) I
* many operating systems TCP segment payloads
auto adjust RcvBuffer  —-------------oooooooooo '
sender limits amount of
unACKed (“in-flight”) data
toreceiver's rundvalue =~ - ccc oo o oo ooooooooooooos n
. RcvBuffer -> received buffer data
guarantees receive buffer
will not overflow

rwnd free buffer space

X3

¢

X3

¢

Rwnd -> received window free
buffer space

TCP Connection Management

Before exchanging data, sender/receiver “handshake”:

« Agree to establish connection (each knowing the other willing
to establish connection).

« Agree on connection parameters.

application application
I 1
connection state: ESTAB Connection connection state: ESTAB
connection variables: set up connection Variables:
seq # client-to-server seq # client-to-server
server-to-client server-to-client
rcvBuffer Size rcvBuffer size
at server, client at server, client
q network network E
% N ] N 1
Socket clientSocket = Socket connectionSocket =
newSocket ("hostname", "port number") ; welcomeSocket.accept () ;

15/11/2020

32



SECR1213 Network Communications

TCP Connection Management

isn (Initial Sequence Number)

Agreeing to Establish a Connection

Client host Server host

Connection

request —— YN=

—— Connection
granted
ACK
Time Time
Figure: TCP 3-way handshake: segment exchange 3-65

TCP Connection Management

sn (Initial Sequence Number)

Agreeing to Establish a Connection

Client host Server host (Exam ple)
TCP State: g TCP State:
X LISTEN
Connection

SYN_SENT

request —— W\‘
r5eq.=3

—— Connection

granted SYN_RCVD
ESTABLISHED ACK
ESTABLISHED
Time Time
Figure: TCP 3-way handshake: segment exchange 3-66

15/11/2020

33



SECR1213 Network Communications 15/11/2020

3 TCP Connection Management

Closing a Connection

« Client, server each close their side of connection
= send TCP segment with FIN bit = 1.

+ Respond to received FIN with ACK
= on receiving FIN, ACK can be combined with own FIN

+ Simultaneous FIN exchanges can be handled.

3-67

3 TCP Connection Management

Closing a Connection

Client Server

il

Close

Timed wait

Closed

Time Time

Figure: Closing a TCP connection

34



SECR1213 Network Communications

3 TCP Connection Management

Closing a Connection

Client host Server host (Exam p|e)
TCP State: T s
)
FIN WATT 1 Close FINS1, seq 5
CLOSE_WAIT

ack=1,ACK"2
FIN WAIT 2

FIN=1, seqs=? Close LAST ACK

ACK:l , ACKS <10

TIME WAIT

Timed wait

Closed

Time Time

Figure: Closing a TCP connection

Congestion:
> Informally:

“too many sources sending too much data
too fast for network to handle”.

- Different from flow control!

‘Manifestations: 1
= [ost packets (buffer overflow at routers).

= Long delays (queuing in router buffers).

+ atop-10 problem!

3-70

15/11/2020

35



SECR1213 Network Communications

Approaches toward congestion control

' Approaches

+ No explicit feedback from
network.

+ Congestion inferred from
end-system observed loss,
delay (e.g. from timeout,
duplicate ACK).

+ Approach taken by TCP.

+ Routers provide feedback to

end systems:
= single bit indicating
congestion (as implemented
by SNA, DECbit, TCP/IP
ECN, ATM).

= explicit rate for sender to

send at.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LastByteSent Key:

Already Usable,
16 17 18 19 20 21 22 23 ACK'd not yet sent

LastByteAcked cwnd

s+ sender limits transmission:

IIEOO00OERRuaa ==

LastByteSent- LastByteAcked < cwnd

TCP sending rate:
+ roughly: send cwnd

bytes, wait RTT for ACKs,

+ cwnd is dynamic, function of
perceived (recognized) network
congestion

then send more bytes

cwnd
RTT

rate = bytes/sec

15/11/2020

36



SECR1213 Network Communications

Overview

% There are generally THREE phases:
% Slow Start;
% Congestion Avoidance (CA);

<+ Loss event because of:

3-73

' Major Components

Fast
Recovery

Figure: The components of TCP Congestion-Control algorithms

» Slow start and congestion avoidance are mandatory
components of TCP Congestion-Control algorithms
+ different: how they increase the size of cwnd in

response to received ACKs.
3-74

15/11/2020

37



SECR1213 Network Communications 15/11/2020

3 TCP Slow Start &

Congestion Avoidance (CA)

Host A Host B

+ When connection begins, g‘
increase rate exponentially until \
first loss event: RTT

« initially cwnd = 1 MSS { —
= double cwnd every RTT W‘
= done by incrementing cwnd ><

for every ACK received

four Segmentg

Summary: oo .
4+ initial rate is slow but ramps up | p——
| exponentially fast. : Time Time

Figure: TCP slow start

3 TCP Slow Start &
Congestion Avoidance (CA)

(Loss because of timeout)

Q: When should the ——
. . Congestion Avoidance
exponential increase 14—
switch to linear? 12

_| ssthresh

Timeout

A: When cwnd gets to
1/2 of its value
before timeout. - TE—
(Congestion Avoidance) ot +—+—+++—+—+—+—"—+1+11

01 2 3 4 5 6 7 8 9 10111213 14 15

Transmission round

(in segments,

ssthresh

Congestion window

Implementation:
» variable ssthresh (slow-start threshold)
» on loss event:
* ssthresh is set to 1/2 of cwnd just before loss event
* Value of cwnd is set to 1 MSS (slow start) 376

38



SECR1213 Network Communications

Phase TR CW SS ssthresh

TCP Slow Start &

Congestion Avoidance (CA)
(Loss because of timeout)

ssthresh

ssthresh

14
1 1 1 8 REE
21 2 |3 8
Slow §ﬁ10_
Start | 3 | 4 7 8 B
M 4] 8 |15 8 55
g3 o
5| 9 |24 8 2 |
(s}
6 | 10 | 34 8 R
CA
7| 11 |44 8 o
8 | 12 | 56 EPIPEL 0

1 T 1T 17T 717 T 7 T T T T T T
1 2 3 4 5 6 7 8 910111213 14 15
Transmission round

Figure: Switching from slow start to CA)

TR = Transmission Round

CW = Congestion Window

SS = Segment Send

ssthresh = Slow Start Threshold

Phase TR CW SS ssthresh

14—
o IR 5 6
12
Slow 071 2 | 59 6 3
Start 8 . 10
) 1| 4 | 63 6 £E
[
137 |78 6 i
£,
CA "4 & | 86 6 S .
15| 9 | 95 6
0

TCP Slow Start &
Congestion Avoidance (CA)

(Loss because of timeout)

_| ssthresh

ssthresh

0

| 1T T T 1T T T T T T°T 1
12 3 4 56 7 8 9101112131415
Transmission round

TR = Transmission Round

CW = Congestion Window

SS = Segment Send

ssthresh = Slow Start Threshold

3-78

15/11/2020

39



SECR1213 Network Communications 15/11/2020

TCP Fast Recovery

(Loss because of 3 Duplicate ACKs)

Earlier version of TCP 14

entered Slow start § 5 10
S5 gssthresh T
S E
. £ ed /el
Newer version of TCP fe ssitresh
(TCP ) S ]
incorporated fast 0
recovery 01234567 8810112131415

Transmission round

Implementation:
+ onloss event, ssthresh is set to 1/2 of cwnd just before
loss event

+ cwnd is cut in half window then grows linearly
3-79

TCP Fast Recovery

(Loss because of 3 Duplicate ACKs)
8 12 56 12/2=6
14—
TR CW SS ssthresh TCP Reno
9 6 62 6 N
10 69 6 2 5 107
=5 gssthresh
1 7 6 c €
g g 6_ ______
12 9 86 6 g2 ssthresh
13 | 10 | 9 6 S M
14 | 1 107 6 27
Ofr—T T T 1T T T T T T T T T T T T
= 2 U1 - 01 2 3 4 56 7 8 910111213 1415
Transmission round
TR = Transmission Round
CW = Congestion Window
SS = Segment Send
TCP Reno ssthreshold = Slow Start Threshold
3-80

40



SECR1213 Network Communications

] TCP Reno

12+
z
8 5 104
8-

(in segment:

Congestion wi

6
2
2

123456 78 9101112131415
Transmission roun d

TCP Tahoe

+ Loss indicated by timeout
or 3 duplicate ACKs :
(Slow Start)

= cwnd set to 1 MSS;

= window then grows
exponentially (as in slow
start) to threshold,
then grows linearly

3 TCP Fast Recovery

Detecting, Reacting to Loss Events

TCP Reno

¢ Loss indicated by
(Slow Start)
= cwnd set to 1 MSS;
= window then grows
exponentially (as in slow start)
to threshold, then grows linearly

+» Loss indicated by
(Fast Recovery)
» dup ACKs indicate network capable
of delivering some segments
» cwnd is cut in half window then
grows linearly

Question:

the following questions:
a) Complete the table.

sent at that TR?

Supposed host A connected to host B for transmitting segments
over TCP with congestion control.

Assume that the initial threshold is 6 MSS.

If the timeout event occurred at transmission round (TR=8), answer

b) What is the new threshold after timeout?
c) What is/are the range of TRs involved in the congestion avoidance.

d) What is/are the range of TRs involved in the fast recovery?
e) At which TR the new threshold applied and how many segments

Note: CW (Congestion Window), SS (Segment Send)

15/11/2020

41



SECR1213 Network Communications

TR

O|o(N|O(a|h|W|N |~

Note: CW (Congestion Window), SS (Segment Send)

TCP Congestion Control:

Retrospective
Additive Increase Multiplicative Decrease (AIMD)

« TCP congestion control often referred as AIMD

« Approach: sender increases transmission rate (window
size), probing for usable bandwidth, until loss occurs

" rincrease cwnd (congestion
window) by 1 MSS every RTT until loss detected
" : cut cwnd in half after loss

——— additively increase window size ...

24 K- ~... until loss occurs (then cut window in half)
AIMD saw tooth

behavior: probing
for bandwidth

£ 16k,

8K+

cwnd: TCP sender
Congestion window

Time 3-84

15/11/2020

42



SECR1213 Network Communications 15/11/2020

« principles behind transport layer

services:
= multiplexing, demultiplexing
= reliable data transfer

= flow control

— = congestion control

Next:
+ leaving the network “edge” (application, transport layers)
+ into the network “core”

43



