

ASSIGNMENT 1 DISCRETE STRUCTURE

Group Member :	Nur Afikah Binti Mohd Hayazi (A20EC0220)		
	2. Amir Firdaus Bin Rosman (A20EC0180)		
	3. Syaza Syaurah Binti Mohd Yusran (A20EC0227)		
Submission Date :	29 November 2020		

1. Let the universal set be the set R of all real numbers and let $A=\{x\in R\mid 0\le x\le 2\}$, $B=\{x\in R\mid 1\le x\le 4\}$ and $C=\{x\in R\mid 3\le x\le 9\}$. Find each of the following:

a)
$$A \cup C = \{ x \in R \mid 0 < x \le 2 \text{ or } 3 \le x < 9 \}$$

b)
$$(A \cup B)' = \{ x \in R \mid x <= 0 \text{ or } x >= 4 \}$$

c)
$$A' \cup B' = \{ x \in R \mid x <= 0 \text{ or } x >= 4 \}$$

QUESTION 2

2. Draw Venn diagrams to describe sets A, B, and C that satisfy the given conditions.

a)
$$A \cap B = \emptyset$$
, $A \subseteq C$, $C \cap B \neq \emptyset$

b) $A \subseteq B$, $C \subseteq B$, $A \cap C \neq \emptyset$

c) $A \cap B \neq \emptyset$, $B \cap C \neq \emptyset$, $A \cap C = \emptyset$, $A \not\subset B$, $C \not\subset B$

3. Given two relations S and T from A to B,

$$S \cap T = \{(x,y) \in A \times B \mid (x,y) \in S \text{ and } (x,y) \in T\}$$

 $S \cup T = \{(x,y) \in A \times B \mid (x,y) \in S \text{ or } (x,y) \in T\}$

Let $A=\{-1, 1, 2, 4\}$ and $B=\{1,2\}$ and defined binary relations S and T from A to B as follows:

For all $(x,y) \in A \times B$, $x \in S$ $y \leftrightarrow |x| = |y|$

For all $(x,y) \in A \times B$, $x \top y \leftrightarrow x - y$ is even.

State explicitly which ordered pairs are in A×B, S, T, S ∩ T, and S ∪ T

$$A \times B = \{ (-1, 1), (-1, 2), (1, 1), (1, 2), (2, 1), (2, 2), (4, 1), (4, 2) \}$$

$$S = \{ (-1, 1), (1, 1), (2, 2) \}$$

$$T = \{ (-1, 1), (1, 1), (2, 2), (4, 2) \}$$

$$S \cap T = \{ (-1, 1), (1, 1), (2, 2) \}$$

$$S \cup T = \{ (-1, 1), (1, 1), (2, 2), (4, 2) \}$$

4. Show that $\neg ((\neg p \land q) \lor (\neg p \land \neg q)) \lor (p \land q) \equiv p$. State carefully which of the laws are used at each stage.

LHS =
$$\neg ((\neg p \land q) \lor (\neg p \land \neg q)) \lor (p \land q)$$

= $\neg (\neg p \land (q \lor \neg q)) \lor (p \land q)$ Distribution Laws
= $(p \land (\neg q \lor q)) \lor (p \land q)$ Double negation
= $p \land (p \land q)$ Absorption Laws
= $p \land (p \land q)$

QUESTION 5

5. R1={ $(x,y)| x+y \le 6$ }; R1 is from X to Y; R2={(y,z)| y>z}; R2 is from Y to Z; ordering of X, Y, and Z: 1, 2, 3, 4, 5. Find:

a) The matrix A1 of the relation R1 (relative to the given orderings)

$$R1 = \{ (1,1), (1,2), (1,3), (1,4), (1,5), (2,1), (2,2), (2,3), (2,4), (3,1), (3,2), (3,3), (4,1), (4,2), (5,1) \}$$

A1 =	1	2	3	4	5
1	1	1	1	1	1
2	1	1	1	1	0
3	1	1	1	0	0
4	1	1	0	0	0
5	1	0	0	0	0

b) The matrix A2 of the relation R2 (relative to the given orderings)

$$R2 = \{ (2,1), (3,1), (3,2), (4,1), (5,1), (4,2), (4,3), (5,4), (5,3), (5,2) \}$$

A2=	1	2	3	4	5
1	0	0	0	0	0
2	1	0	0	0	0
3	1	1	0	0	0
4	1	1	1	0	0
5	1	1	1	1	0

c) Is R1 reflexive, symmetric, transitive, and/or an equivalence relation?

R1 is not reflexive, not transitive but symmetric,

d) Is R2 reflexive, antisymmetric, transitive, and/or a partial order relation?

R2 is not reflexive, not transitive and antisymmetric

6. Suppose that the matrix of relation R1 on {1, 2, 3} is

[1 0 0]

[0 1 1]

[1 0 1]

relative to the ordering 1, 2, 3, and that the matrix of relation R2 on {1, 2, 3} is

[0 1 0]

[0 1 0]

[1 0 1]

relative to the ordering 1, 2, 3.

Find:

a) The matrix of relation R1 ∪ R2

$$R1 = \{ (1,1), (2,2), (2,3), (3,1), (3,3) \}$$

$$R2 = \{ (1,2), (2,2), (3,1), (3,3) \}$$

$$R1 \cup R2 = \{ (1,1), (1,2), (2,2), (2,3), (3,1), (3,3) \}$$

R1 ∪ R2 =	1	2	3
1	1	1	0
2	0	1	1
3	1	0	1

b) The matrix of relation R1 ∩ R2

$$R1 = \{ (1,1), (2,2), (2,3), (3,1), (3,3) \}$$

$$R2 = \{ (1, 2), (2, 2), (3, 1), (3, 3) \}$$

$$R1 \cap R2 = \{(2,2),(3,1),(3,3)\}$$

R1 ∩ R2 =	1	2	3
1	0	0	0
2	0	1	0
3	1	0	1

QUESTION 7

7. If $f:R\to R$ and $g:R\to R$ are both one-to-one, is f+g also one-to-one? Justify your answer.

Since f and g function are real numbers;

If f defined as f(x) = x, g(x) = -x, this are one to one function, However (f+g)x = 0 for all,

This shows that f+g is not one to one.

8. With each step you take when climbing a staircase, you can move up either one stair or two stairs. As a result, you can climb the entire staircase taking one stair at a time, taking two at a time, or taking a combination of one- or two-stair increments. For each integer n≥1, if the staircase consists of n stairs, let cn be the number of different ways to climb the staircase. Find a recurrence relation for c1, c2,, cn.

$$c2 = 2$$

The first one is if we climb one stair at a time, the general formula is:

The 2nd one is if we climb two stairs at a time, the general formula is:

If more than 3 steps;

QUESTION 9

9. The Tribonacci sequence (tn) is defined by the equations, t0 = 0, t1 = t2 = 1, tn = tn-1 + tn-2 + tn-3 for all $n \ge 3$.

$$t3 = 1 + 1 + 0 = 2$$

$$t4 = 2 + 1 + 1 = 4$$

$$t5 = 4 + 2 + 1 = 7$$

$$t6 = 7 + 4 + 2 = 13$$

$$t7 = 13 + 7 + 4 = 24$$

```
b) Write a recursive algorithm to compute tn, n \ge 3. Input : n Output : t_n t (n) t (n) \{ if ( n = 1 or n = 2 ) return 1  return t ( n - 1 ) + t ( n - 2 ) + t ( n - 3 ) \}
```