
nzah@utm.my : 2020/2021 Sem.1

GRAPH THEORY

(Part 2)

2

Definition 1:

A tree is a connected undirected graph with no simple

circuits.

Theorem 1:

An undirected graph is a tree if and only if there is a

unique simple path between any two of its vertices.

Theorem 2:

A tree with m-vertices has m-1 edges

Introduction

3

Example

a) b)

c)

4

Which of the graphs (a, b and c) are trees?

tree
vertices = 6
edges = 5

Not a tree
vertices = 6
edges = 6

tree
vertices = 9
edges = 8

5

a) b)

c)

Example - Solution

Rooted Tree

Definition 2:

A rooted tree is a tree in which one vertex has
been designed as the root and every edge is
directed away from the root.

a

b

f

c e
d

g

6

Rooted Tree - Terminologies

7

..cont’d

8

..cont’d

9

..cont’d

10

Example

full binary tree full 3-ary tree full 5-ary tree not full 3-ary tree

11

Exercise #1

Find:

i) Ancestors of g

ii) Descendents of g

iii) Parent of e

iv) Children of e

v) Sibling of h

12

Properties of Trees

Theorem 2:

A tree with n nodes has n-1 edges

Theorem 3:

A full m-ary tree with i internal vertices contains

n = mi + 1 vertices.

Corollary: A full m-ary tree with n vertices contains
(n-1)/m internal vertices, and hence
n - (n-1)/m = ((m-1) n+1)/m leaves

Corollary is a result in which the (usually short) proof relies heavily on a given theorem.

14

Theorem 4:

A full m-ary tree with

1. n vertices has i = (n-1)/m internal vertices and

l = [(m-1)n+1]/m leaves.

2. i internal vertices has n = mi +1 vertices and

l = (m-1)i + 1 leaves.

3. l leaves has n =(ml-1)/(m-1) vertices and

i =(l-1)/(m-1) internal vertices.

..cont’d

15

Example

Peter starts out a chain mail. Each person
receiving the mails is asked to send it to four
other people. Some people do this, and some
don’t. Now, there are 100 people who received
the letter but did not send it out. Assuming no
one receives more than one mail. How many
people have sent the letter?

16

The chain letter can be represented using 4-ary tree.
The internal vertices correspond to people who sent
out the letter, and the leaves correspond to people
who did not send it out. Since 100 people did not
send out the letter, the number of leaves in this
rooted tree is, l=100. The number of people have
seen the letter is n = (4×100-1)/(4-1) = 133. The
number of internal vertices is 133-100 = 33, people
sent the letter.

17

Example - Solution

Exercise #2

How many matches are played in a tennis
tournament of 27 players.

Solution:

• A leaf for each player, l=27

• An internal node for each matches: m=2

• Number of matches:
26

12

127

1

1
=

-

-
=

-

-

m

l

18

Suppose 1000 people enter a chess tournament.
Use a rooted tree model of the tournament to
determine how many games must be played to
determine a champion, if a player is eliminated
after one loss and games are played until only
one entrant has not lost. (Assume there are no
ties.)

19

Exercise #3

• The level of a vertex v in a rooted tree is the
length of the unique path from the root to this
vertex.

• The level of the root is defined to be zero.

• The height of a rooted tree is the maximum of
the levels of vertices.

Properties of Rooted Trees

21

Definition:

A rooted m-ary tree of height h is balanced if all
leaves are at levels h or h-1.

Theorem:

There are at most mh leaves in an m-ary tree of
height h.

..cont’d

22

Example

23

Which of the rooted trees shown below
are balanced?

Solution: T1, T3

24

Example

Tree Traversal

Universal Address Systems

Label vertices:

1. Root  0, its k children  1, 2, …, k (from left to right)

2. For each vertex v at level n with label A,

its r children  A.1, A.2, …, A.r (from left to right).

We can totally order the vertices using the lexicographic

ordering of their labels in the universal address system.

x1.x2…..xn < y1.y2…..ym

if there is an i, 0  i  n, with x1= y1, x2= y2, …, xi-1= yi-1,

and xi<yi; or if n<m and xi = yi for i=1, 2, …, n.

25

The lexicographic ordering is:
0 < 1<1.1 < 1.2 < 1.3 < 2 < 3 < 3.1 < 3.1.1 < 3.1.2 < 3.1.2.1 < 3.1.2.2 < 3.1.2.3 <

3.1.2.4 < 3.1.3 < 3.2 < 4 < 4.1 < 5 < 5.1 < 5.1.1 < 5.2 < 5.3

26

..cont’d

Find the lexicographic ordering of the above tree.

27

Exercise #4

Procedures for systematically visiting every
vertex of an ordered rooted tree are called
traversal algorithm. There are three most
commonly used such algorithms:

1) Preorder: root, left-subtree, right subtree

2) Inorder: left subtree, root, right sub-tree

3) Postorder: left subtree, right sub-tree, root

Traversal Algorithm

29

Preorder Traversal

Procedure preorder(T: ordered rooted tree)

r := root of T

list r

for each child c of r from left to right

begin

T(c) := subtree with c as its root

preorder(T(c))

end

30

Example

Preorder traversal:

31

Inorder Traversal

Procedure inorder(T: ordered rooted tree)

r := root of T

If r is a leaf then list r

else

begin

l := first child of r from left to right

T(l) := subtree with l as its root

inorder(T(l))

list r

for each child c of r except for l from left to right

T(c) := subtree with c as its root

inorder(T(c))

end

32

Inorder traversal

33

Example

Postorder Traversal

Procedure postorder(T: ordered rooted tree)

r := root of T

for each child c of r from left to right

begin

T(c) := subtree with c as its root

postorder(T(c))

end

list r

34

Postorder traversal

35

Example

Determine the order when a visits of

the vertices for the given ordered

rooted tree is conducted using a:

i) preorder traversal

ii) inorder traversal

iii) Postorder traversal

36

Exercise #5

Determine the order
of preorder, inorder
and postorder of the
given rooted tree.

40

Exercise #6

Determine the order
of preorder, inorder
and postorder of the
given rooted tree.

42

Exercise #7

Preorder: a, b, e, f, l, m, n, c, g,
h, o, p, d, i, j, q, s, t, u, r, k

Inorder: e, b, l, f, m, n, a, g, c, o,
h, p, i, d, s, q, u, t, j, r, k

Postorder: e, l, m, n, f, b, g, o, p,
h, c, i, s, u, t, q, r, j, k, d, a

43

Exercise #7 – Solution

Spanning Trees

A spanning tree is a simple graph that is a
subgraph of G and contains every vertex of G
and is a tree.

A connected
undirected graph

Four spanning trees of the graph

44

Minimum Spanning Tree

(MST)

A Minimum Spanning Tree is a spanning tree on
a weighted graph that has minimum total
weight.

Example:

a b

c d

5

7

32

4

6
5

T1= 10

2 3

a b

c d

a aab b

c d

b

c dc d

2 6

4

2 37

5

3

4
T2= 12 T3= 12 T4= 12

45

…cont’d

46

Muddy City Problem

Once upon a time there was a city that had no roads. Getting
around the city was particularly difficult after rainstorms because
the ground became very muddy. Cars got stuck in the mud and
people got their boots dirty. The mayor of the city decided that
some of the streets must be paved, but didn’t want to spend more
money than necessary because the city also wanted to build a
swimming pool.

47

Example

The mayor therefore specified two conditions:

1. Enough streets must be paved so that it is possible for everyone
to travel from their house to anyone else's house only along
paved roads, and

2. The paving should cost as little as possible.

Here is the layout of the city. The number of paving stones
between each house represents the cost of paving that route. Find
the best route that connects all the houses, but uses as few
counters (paving stones) as possible.

48

…cont’d

49

…cont’d

The graph

4

5

3
3 3

3

3

2

4

2

4

5

4
2

3

4

4

2
3

4

50

…cont’d

The paving:

51

…cont’d

Examples: Application of MST

a) In the design of electronic circuitry, it is often
necessary to make a set of pins electrically
equivalent by wiring them together.

b) Running cable TV to a set of houses. What’s
the least amount of cable needed to still
connect all the houses?

52

Finding MST

Kruskal’s Algorithm:

Start with no nodes or edges in the
spanning tree and repeatedly add the
cheapest edge that does not create a cycle.

53

Kruskal’s Algorithm

Procedure Kruskal (G: weighted connected undirected
graph with n vertices)

T:= empty graph

for i := 1 to n-1

begin

e:= any edge in G with smallest weight that does

not form a simple circuit when added to T

T:= T with e added

end (T is a minimum spanning tree of G)

54

A cable company want to connect five villages to their network
which currently extends to the market town of Avonford. What is
the minimum length of cable needed?

Avonford Fingley

Brinleigh Cornwell

Donster

Edan

2

7

4
5

8 6
4

5

3

8

55

Example

We model the situation as a network, then the problem is to find the minimum
connector for the network. Use Kruskal’s Algorithm.

A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

56

Example - Solution

List the edges in order of size:

ED 2
AB 3
AE 4
CD 4
BC 5
EF 5
CF 6
AF 7
BF 8
CF 8

Select the shortest
edge in the network

ED 2

A
F

B
C

D

E

2

7

4
5

8 6
4

5

3

8

57

…cont’d

Select the next
shortest edge which
does not create a
cycle

ED 2
AB 3

A
F

B
C

D

E

2

7

4
5

8 6
4

5

3

8

58

…cont’d

Select the next
shortest edge which
does not create a
cycle

ED 2
AB 3
CD 4 (or AE 4)A

F

B
C

D

E

2

7

4
5

8 6
4

5

3

8

59

…cont’d

Select the next
shortest edge which
does not create a
cycle

ED 2
AB 3
CD 4
AE 4

A
F

B
C

D

E

2

7

4
5

8 6
4

5

3

8

60

…cont’d

Select the next
shortest edge which
does not create a
cycle

ED 2
AB 3
CD 4
AE 4
BC 5 – forms a cycle
EF 5

A
F

B
C

D

E

2

7

4
5

8 6
4

5

3

8

61

…cont’d

All vertices have
been connected.

The solution is

ED 2
AB 3
CD 4
AE 4
EF 5

Total weight of tree:
18

A
F

B
C

D

E

2

7

4
5

8 6
4

5

3

8

62

…cont’d

Important notes:

• The graph given should be a tree

– Remove all loops (if any)

– Remove all parallel edges

• keep the one which has the least weight associated and
remove all others.

63

…cont’d

Example

64

• Remove all loops and parallel edges

65

…cont’d

Arrange all edges in their increasing order of
weight.

BD DT AC CD CB BT AB SA SC

2 2 3 3 4 5 6 7 8

66

…cont’d

Add the edge which has the least weightage

The least weight is 2
and edges involved are

BD and DT

Next weight is 3, and
associated edges are

AC and CD

67

…cont’d

Next weight is 4, and we
observe that adding it will
create a circuit in the graph.
Thus, we ignore it.

We observe that edges with
weight 5 and 6 also create
circuits. We ignore them and
move on.

Now we are left with only one
node to be added. Between the
two least weighted edges
available 7 and 8, we shall add the
edge with weight 7.

68

…cont’d

Now we have minimum spanning tree with total
weight is 17.

69

…cont’d

Exercise #8

Find the minimum spanning tree using Kruskal’s
Algorithm and give the total weight for the
minimum spanning tree.

70

Find the minimum spanning tree using Kruskal’s
Algorithm and give the total weight for the
minimum spanning tree.

72

Exercise #9

