
CHAPTER 1

QUANTIFIERS & PROOF TECHNIQUE
[Part 4]
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• Most of the statements in mathematics and computer 
science are not described properly by the propositions.

• Since most of the statements in mathematics and 
computer science use variables, the system of logic 
must be extended to include statements with the 
variables.

QUANTIFIERS
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 Let P(x) is a statement with variable x and A is a set.

 P a propositional function or also known as predicate if 
for each x in A, P(x) is a proposition. 

 Set A is the domain of discourse of P.

Domain of discourse: the particular domain of the 
variable in a propositional function.

QUANTIFIERS (cont’d)
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A predicate is a statement that contains variables.

Example:
P (x): x > 3
Q (x, y): x = y + 3
R (x, y, z): x + y = z

QUANTIFIERS (cont’d)
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1) x2 + 4x is an odd integer 
(domain of discourse is set of positive numbers).

2) x2 – x – 6 = 0 
(domain of discourse is set of real numbers).

3) The university rated as Research University in Malaysia 
(domain of discourse is set of research university in Malaysia).

Example:
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The following are propositional functions:



A predicate becomes a proposition if the variable(s) 
contained is(are)
Assigned specific value(s)
Quantified

Example:
i) P(x): x > 3
What are the truth values of P(4) and P(2)?
ii) Q(x,y): x = y + 3 
What are the truth values of Q(1,2) and Q(3,0)?

QUANTIFIERS (cont’d)
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Two types of quantifiers:
a) Universal

b) Existential

QUANTIFIERS (cont’d)
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 Let A be a propositional function with domain of 
discourse B. The statement:

for every x, A(x)
is universally quantified statement

 Symbol ∀ called a universal quantifier is used 
“for every”. 

 Can be read as “for all”, “for any”. 

Universal Quantifier
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 The statement can be written as

∀x A(x)
 Above statement is true if A(x) is true for every x in B 

and it false if A(x) is false for at least one x in B. 

 A value x in the domain of discourse that makes the 
statement A(x) false is called as a counterexample to 
the statement.

Universal Quantifier (cont’d)
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Let the universally quantified statement is

∀x (x2 ≥ 0)
Domain of discourse is the set of real numbers. 
Determine the truth value of this statement.

Example:
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Answer:
This statement is true because for every real number 
x, it is true that the square of x is positive or zero.



Let the universally quantified statement is

∀x (x2 ≤ 9)
Domain of discourse is a set B = {1, 2, 3, 4}
Determine the truth value for this statement. 

Example:
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Answer: 
This statement is false and the counterexample is 4, 
because when x = 4, the statement produce false
value. 
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 Easy to prove a universally quantified statement is true
or false if the domain of discourse is not too large.
What happen if the domain of discourse contains a

large number of elements?
 For example, a set of integer from 1 to 100, the set of

positive integers, the set of real numbers or a set of
students in Faculty of Computing. It will be hard to
show that every element in the set is true.
 Therefore, we need to use existential quantifier.
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Universal Quantifier (cont’d)



 Let A be a propositional function with domain of 
discourse B. The statement

There exist x, A(x)
is existentially quantified statement

 Symbol ∃ called an existential quantifier is used 
“there exist”. 

 Can be read as “for some”, “for at least one”. 

Existantial Quantifiers (cont’d)
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 The statement can be written as

∃x A(x)
 Above statement is true if it possible to find at least 

one x in B that makes A(x) true, and it will be false if 
every x in B that makes the statement A(x) false.

 Just find one x that makes A(x) true!
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Existantial Quantifiers (cont’d)
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Let the existentially quantified statement is

∃𝑥𝑥
𝑥𝑥

𝑥𝑥2 + 1
=

2
5

Domain of discourse is the set of real numbers. 

Determine the truth value for this statement. 

Example:
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Answer:
Statement is true because it is possible to find at least 
one real number x to make the proposition true. 
For example, if x = 2, we obtain the true proposition as 
below.


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



 =

+
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+ 5
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Distributing a negation operator across a quantifier 
changes a universal to an existential and vice versa.

¬ (∀x P(x)) => ∃x ¬P(x) 

¬ (∃x P(x)) => ∀x ¬P(x)

Negation of Quantifiers
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Let P(x) = x is taking Discrete Structure course with the 
domain of discourse is the set of all students.
∀x P(x): All students are taking Discrete Structure 

course.
 ∃x P(x): There is some students who are taking Discrete 

Structure course.
∀x ¬P(x): All students are not taking Discrete Structure 

course.
 ∃x ¬P(x): There are some students who are not taking 

Discrete Structure course.

Example:
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Mathematical systems consists:
 Axioms - assumed to be true.
 Definitions - used to create new concepts.
 Undefined terms - some terms that are not explicitly defined.
 Theorem – proposition that has been proved to be true. 

PROOF TECHNIQUES
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Theorem: 
 It can be stated as follows:

 As facts
 As implications 
 As bi-implications

 An argument that establishes the truth of a theorem is 
called a proof.



There are several techniques to proof theorem:

i. Direct proof
ii. Indirect proof
iii. Proof by contradiction
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PROOF TECHNIQUES (cont’d)
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Direct Proof
 Direct proof or proof by direct method assumes that
𝑝𝑝 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 is true and then using 𝑝𝑝 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 as well
as other axioms, definitions and theorems, show directly that
𝑞𝑞 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 is true.

Symbol:∀x (P(x) → Q(x))

 Procedure for direct proof:
 Let D is the domain of discourse, select a particular, but

arbitrarily chosen, member of the domain D.
 Then show that the statement ∀x (P(x) → Q(x)) is true by

assuming that P(x) is true and then show that Q(x) is also
true.
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Example:
Use direct proof to prove the following theorem.

For all integer x, if x is odd, then x2 is odd. 

Solution:
We can verify the theorem by substituting x with certain values. 
For example, 

𝑥𝑥 = 3 → 𝑥𝑥2 = 9 (both odd); 
𝑥𝑥 = 511 → 𝑥𝑥2 = 261121 (both odd)

However, verifying a given theorem for a particular value is not a 
proof. Therefore, we must prove that the theorem is true for an 
arbitrary value. So, let

P(x) = x is an odd integer
Q(x) = x2 is an odd integer
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Solution (cont’d)

Symbolically, ∀𝑥𝑥 𝑃𝑃 𝑥𝑥 → 𝑄𝑄 𝑥𝑥 with domain of discourse is the set of all 
integers. Let a is an odd integer. 

2

2
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where m = 2n2 + 2n is an integer

is an odd integer 
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Consider the implication 𝑝𝑝 → 𝑞𝑞 which is equivalent to the 
implication ¬𝑞𝑞 → ¬𝑝𝑝.

Therefore, in order to show that 𝑝𝑝 → 𝑞𝑞 is true, we can 
also show that the implication ¬𝑞𝑞 → ¬𝑝𝑝 is true.

To show that ¬𝑞𝑞 → ¬𝑝𝑝 is true, assume that the negation 
of 𝑞𝑞 is true and prove that the negation of 𝑝𝑝 is true.

Indirect Proof
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Example:
Use indirect proof to prove the following:

Let n be an integer, if 𝑛𝑛2+3 is odd, then n is even.

Solution:
Let, 

P(n) = n2+3 is an odd integer
Q(n) = n is an even integer.

Symbolically, ∀𝑥𝑥 𝑃𝑃 𝑥𝑥 → 𝑄𝑄 𝑥𝑥 with domain of discourse is the 
set of all integers. 

Assume n is a particular integer but arbitrary chosen element from 
the domain of discourse.  
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For this n, suppose ¬𝑄𝑄 𝑛𝑛 is true, we need to show that ¬𝑃𝑃(𝑛𝑛) is true. 

Because ¬𝑄𝑄 𝑛𝑛 is true, n is not even. Then, n is odd. 

So, 𝑛𝑛 = 2𝑘𝑘 + 1 for some integer k. 
𝑛𝑛 = 2𝑘𝑘 + 1
𝑛𝑛2 = 2𝑘𝑘 + 1 2

𝑛𝑛2 = 4𝑘𝑘2 + 4𝑘𝑘 + 1
𝑛𝑛2 + 3 = (4𝑘𝑘2 + 4𝑘𝑘 + 1)+3
𝑛𝑛2 + 3 = 4𝑘𝑘2 + 4𝑘𝑘 + 4
𝑛𝑛2 + 3 = 2(2𝑘𝑘2 + 2𝑘𝑘 + 2)

Because k is integer, thus 𝑡𝑡 = 2𝑘𝑘2 + 2𝑘𝑘 + 2 is an integer. So, 𝑛𝑛2 + 3 = 2𝑡𝑡, 
which is multiple of 2. Therefore, 𝑛𝑛2 + 3 is even integer, ¬𝑃𝑃(𝑛𝑛) is true. 

Solution (cont’d)
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Proof by Contradiction
In a proof by contradiction, we assume that the conclusion is not 
true then arrive at a contradiction.
Example:
Prove the following theorem:

There are infinitely many prime numbers.

Solution:
Assume to the contrary that there are only finite many prime numbers and all of them 
are listed as: 𝑝𝑝1, 𝑝𝑝2,…...,𝑝𝑝𝑛𝑛
Consider the number 𝑞𝑞 = 𝑝𝑝1, 𝑝𝑝2,…...,𝑝𝑝𝑛𝑛+1. The number q is either prime or not 
divisible. If we divide any of the listed primes, 𝑝𝑝𝑖𝑖 into 𝑞𝑞, there would result a remainder 
of 1 for each 𝑖𝑖 = 1, 2, … ,𝑛𝑛. Thus q is not divisible, but not listed above. Therefore, q is a 
prime. 
Contradiction! Therefore, there are infinitely many primes numbers.
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Exercise
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