
CHAPTER 1

FUNDAMENTAL & ELEMENTS OF LOGIC

[Part 3]
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Some of the reasons:
• Logic is the foundation for computer operation.
• Logical conditions are common in computer programs:

Example:
Selection:  if (score <= max) { ... }
Iteration:  while (i<limit && list[i]!=sentinel) ...

• All manner of structures in computing have properties that need 
to be proven (and proofs that need to be understood).
Examples: Trees, Graphs, Recursive Algorithms, . . .

• Programs can be proven correct.
• Computational linguistics must represent and reason about 

human language, and language represents thought (and thus 
also logic).

Why Are We Studying Logic?
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A statement or a proposition, is a declarative 
sentence that is either True or False, but not 
both.

Example:
a) 4 is less than 3 
b) 7 is an odd integer.
c) Washington, DC, is the capital of 

United State.

PROPOSITION

3
3

=> False

=> True

=> True



Example:

i) Why do we study mathematics?
ii) Study logic.
iii) What is your name?
iv) Quiet, please.

The above sentences are not propositions. Why ?

(i) &  (iii) : is question, not a statement.
(ii)& (iv) : is a command.
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i) The temperature on the surface of the planet 
Venus is 800 F.

ii) The sun will come out tomorrow.

Propositions? Why?

i) Is a statement since it is either true or false, but not both. 

ii) However, we do not know at this time to determine whether 

it is true or false. 
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Example:



Conjunctions are:
 Compound propositions formed in English with 

the word “AND”

 Formed in logic with the caret symbol (∧)

 The result is TRUE only when both participating 
propositions are true.

CONJUNCTIONS
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Truth table: This tables aid in the evaluation of 
compound propositions.

p q p∧q

T T T

T F F

F T F

F F F

CONJUNCTIONS (cont’d)
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p : 2 is an even integer
q : 3 is an odd number

p ∧ q

= 2 is an even integer AND 3 is an odd number

Example:

propositions

symbols

Compound 
propositions
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Proposition: 
p : 2 divides 4
q : 2 divides 6

Compound propositions: 

p ∧ q: 2 divides 4 AND 2 divides 6.
or, 
p ∧ q: 2 divides both 4 and 6.
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Example:



Proposition:
p : 5 is an integer
q : 5 is not an odd integer

Symbol: Statement:-
p ∧ q: 5 is an integer and 5 is not an odd integer.
or, 
p ∧ q: 5 is an integer but 5 is not an odd integer.
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Example:



DISJUNCTION

 Compound propositions formed in English 
with the word “OR”

 Formed in logic with the caret symbol (∨)

 The result is TRUE when one or both 
participating propositions are true.
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p q p ∨q

T T T

T F T

F T T

F F F

The truth table for  p ∨ q:

DISJUNCTION (cont’d)
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i) p: 2 is an integer ;  q: 3 is greater than 5

p ∨ q:

ii) p: 1+1=3  ; q: A decade is 10 years

p ∨ q:

iii) p : 3 is an even integer ; q : 3 is an odd integer

p ∨ q:
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Example:



NEGATION

Negating a proposition simply flips its 
value. Symbols representing negation 
include:

Let p be a proposition.
The negation of p, written ¬ p
is the statement obtained by negating
Proposition/statement p.

￢x ,    , ∼x, x′  (NOT)x
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The truth table of ¬ p:

p ¬p

T F

F T

NEGATION (cont’d)
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p: 2 is positive

¬ p : 2 is not positive
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Example:
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EXERCISES 



Exercise #1

p: It will rain tomorrow ;  q: it will snow tomorrow

Give the negation of  the following statement  and write 
the symbol.

It will rain tomorrow or it will snow tomorrow.
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In each of the following, form the conjunction and the 
disjunction of p and q by writing the symbol and the 
statements.

i) p: I will drive my car         
q: I will be late

ii) p: NUM > 10
q: NUM ≤ 15
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Exercise #2



20

Suppose x is a particular real number. Let p, q and r
symbolize “0 < x”, “x < 3” and “x = 3”, respectively. 
Write the following inequalities symbolically:

a) x ≤ 3

b) 0 < x <3

c) 0 < x ≤ 3

Exercise #3



State either TRUE or FALSE if  p and r are TRUE 
and q is FALSE.

a) ~ p ∧ ( q∨ r )

a) ( r ∧ ~q ) ∨ ( p∨ r )
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Exercise #4



CONDITIONAL PROPOSITIONS

Let p and q be propositions.

“if p, then q” 

is a statement called a conditional proposition, 
written as

p → q
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The truth table of p → q  

p q p  q

T T T

T F F

F T T

F F T

23
23

CONDITIONAL PROPOSITIONS (cont’d)

Note: Conditional propositions has a cause and effect relationship



If today is Sunday, then I will go for a walk.

If I get a bonus, then I will buy a new car

p: today is Sunday ; q: I will go for a walk

p → q :

p: I get a bonus ; q: I will buy a new car
p → q:
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Example:



If x/2 is an integer, then x is an even 
integer.

p: x/2 is an integer
q: x is an even integer

p → q: 

25
25

Example:



BICONDITIONAL

Let p and q be propositions.

“p if and only if q”

is a statement called a biconditional proposition, 
written as

p ↔ q
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The truth table of p ↔ q:

p q p ↔ q

T T T

T F F

F T F

F F T

BICONDITIONAL (cont’d)
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My program will compile if and only if it has no 
syntax error.

x is divisible by 3 if and only if x is divisible by 9.

p: my program will compile
q: it has no syntax error.

p ↔ q :

p: x is divisible by 3
q: x is divisible by 9

p ↔ q:
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Example:



LOGICAL EQUIVALENCE

 The compound propositions Q and R are made 
up of the propositions p1, …, pn

 Q and R are logically equivalent and write,
Q ≡ R

provided that given any truth values of p1, …, pn, 
either Q and R are both true or Q and R are both 
false.
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Q = p → q; R = ¬q → ¬p
Show that, Q ≡ R

The truth table shows that, Q ≡ R

p q p → q ¬q →¬p

T T T T

T F F F

F T T T

F F T T
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Example:



Show that ¬ (p → q) ≡ p ∧ ¬q

The truth table shows that,
¬(p → q) ≡ p ∧ ¬q
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Example:



PRECEDENCE OF LOGICAL CONNECTIVES

Precedence of logical connectives 
is as follows:

¬ Highest

∧

∨

→ 

↔ Lowest

not

and

or

If…then

If and only if 
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Construct the truth table for,
A = ¬(p ∨ q) → (q ∧ p)

Solution:
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Example:
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EXERCISES



Construct the truth table for each of the 
following statements:

i) ¬ p ∧ q

ii) ¬(p ∨ q) → q

iii) ¬(¬p ∧ q) ∨ q

iv) (p → q) →(¬q → ¬p)
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Exercise #5



LOGIC & SET THEORY
Logic and set theory go very well togather. The 
previous definitions can be made very succinct:
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Venn Diagrams are used to depict the various 
unions, subsets, complements, intersections 
etc. of sets. 

Venn Diagrams
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Theorem for Logic

Let p, q and r be propositions.

Idempotent laws:
p ∧ p ≡ p
p ∨ p ≡ p

Truth table:
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¬¬ p ≡ p

p ∧ q ≡ q ∧ p
p ∨ q ≡ q ∨ p

Theorem for Logic (cont’d)

Double negation law:

Commutative laws:
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(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)
(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

p ∧ (p ∨ q) ≡ p
p ∨ (p ∧ q) ≡ p

Associative laws:

Distributive laws:

Absorption laws:

Theorem for Logic (cont’d)
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Prove:  Distributive Laws
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Theorem for Logic (cont’d)



Prove:  Absorption Laws
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Theorem for Logic (cont’d)



¬(p ∧ q) ≡ (¬ p) ∨ (¬ q)
¬(p ∨ q) ≡ (¬ p) ∧ (¬ q)

De Morgan’s laws:

The truth table for ¬(p ∨ q) ≡ (¬p) ∧ (¬q)
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Theorem for Logic (cont’d)
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Given,

R = p ∧ (¬q ∨ r)
Q = p ∨ (q ∧ ¬r)

State whether R ≡ Q or not.
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Exercise #6



Propositional functions p, q and r are defined as follows:
p is "n = 7" 
q is "a > 5" 
r is "x = 0" 

Write the following expressions in terms of p, q and r, and show 
that each pair of expressions is logically equivalent. State carefully 
which of the above laws are used at each stage.

(a) ((n = 7) ∨ (a > 5))(x = 0) ≡ ((n = 7) (x = 0)) ∨ ((a > 5) (x = 0))

(b) ¬((n = 7)(a ≤ 5)) ≡ (n ≠ 7) ∨ (a > 5) 

(c) (n = 7) ∨ (¬((a ≤ 5)(x = 0))) ≡ ((n = 7) ∨ (a > 5)) ∨ (x ≠ 0) 
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Exercise #7



Propositions p, q, r and s are defined as follows: 
p is "I shall finish my Coursework Assignment" 
q is "I shall work for forty hours this week" 
r is "I shall pass Maths" 
s is "I like Maths" 

Write each sentence in symbols: 
(a) I shall not finish my Coursework Assignment. 
(b) I don’t like Maths, but I shall finish my Coursework Assignment. 
(c) If I finish my Coursework Assignment, I shall pass Maths. 
(d) I shall pass Maths only if I work for forty hours this week and finish my 
Coursework Assignment. 

Write each expression as a sensible (even if untrue!) English sentence: 
(e) q ∨ p 
(f) ¬p ⇒ ¬r 
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Exercise #8



For each pair of expressions, construct truth 
tables to see if the two compound propositions 
are logically equivalent: 

a)  p∨(q∧¬p) ≡ p∨ q ?

b) (¬p ∧ q)∨ (p∧ ¬q) ≡ (¬p∧¬q)∨(p∧q)?
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Exercise #9


