

CHAPTER 1

SET THEORY [Part 2: Operation on Set]

Union

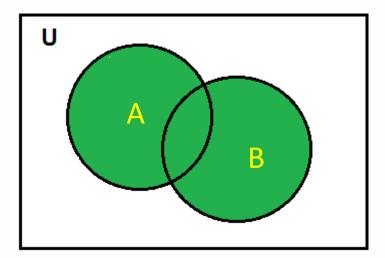
The union of two sets **A** and **B**, denoted by $\mathbf{A} \cup \mathbf{B}$, is defined to be the set

$$A \cup B = \{ x \mid x \in A \text{ or } x \in B \}$$

The union consists of all elements belonging to either A or B (or both)

Union (cont'd)

Venn diagram of A ∪ B



If **A** and **B** are finite sets, the cardinality of $A \cup B$,

$$|A \cup B| = |A| + |B| - |A \cap B|$$

$$A = \{1, 2, 3, 4, 5\}; B = \{2, 4, 6\} \text{ and } C = \{8, 9\}$$

$$A \cup B =$$

$$A \cup C =$$

$$B \cup C =$$

$$A \cup B \cup C =$$

Intersection

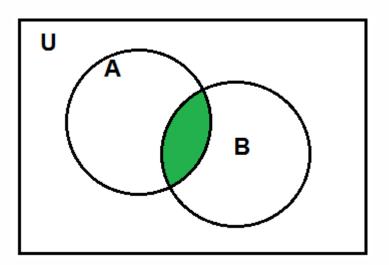
 The intersection of two sets A and B, denoted by A ∩ B, is defined to be the set

$$A \cap B = \{x \mid x \in A \text{ and } x \in B\}$$

 The intersection consists of all elements belonging to both A and B.

Intersection (cont'd)

Venn diagram of A ∩ B



$$W = \{1, 2, 3, 4, 5, 6\}; X = \{2, 4, 6, 8, 10\}; Y = \{1, 2, 8, 10\}$$

$$W \cap X =$$

$$W \cap Y =$$

$$Y \cap X =$$

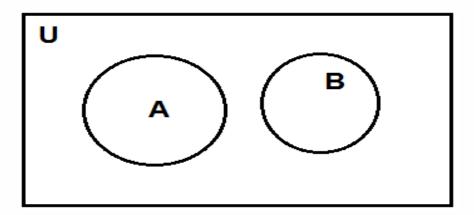
$$W \cap X \cap Y =$$

Disjoint

Two sets **A** and **B** are said to be disjoint if,

$$A \cap B = \emptyset$$

Venn diagram:

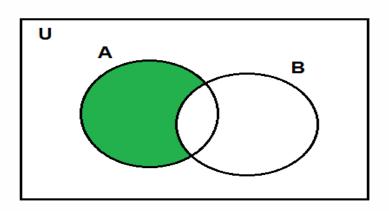


$$A = \{1, 3, 5, 7, 9, 11\}; B = \{2, 4, 6, 8, 10\}$$

$$\mathbf{A} \cap \mathbf{B} = \emptyset$$

Difference

- Let, A and B be sets. The difference of A minus B, denoted $\mathbf{A} - \mathbf{B}$, is the set of all elements in \mathbf{A} that are not in **B**.
- Formally: $\mathbf{A} \mathbf{B} = \{x \mid x \in \mathbf{A} \text{ and } x \notin \mathbf{B}\}$
- Venn diagram:



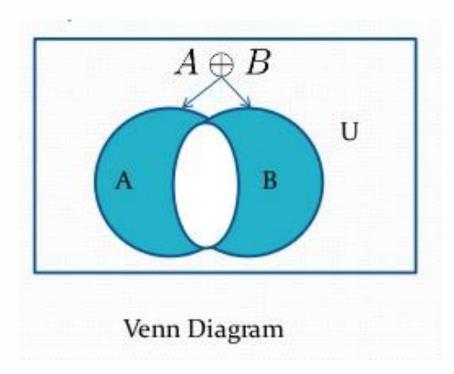
$$A = \{1, 2, 3, 4, 5, 6, 7, 8\}; B = \{2, 4, 6, 8, 9\}$$

$$A - B =$$

$$B-A=$$

Symmetric Difference

The symmetric difference of set A and set B, denoted by $\mathbf{A} \oplus \mathbf{B}$ is the set $(\mathbf{A} - \mathbf{B}) \cup (\mathbf{B} - \mathbf{A})$



Let, U, A and B be sets.

$$\mathbf{U} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

$$\mathbf{A} = \{1, 2, 3, 4, 5\}; \ \mathbf{B} = \{4, 5, 6, 7, 8\}$$

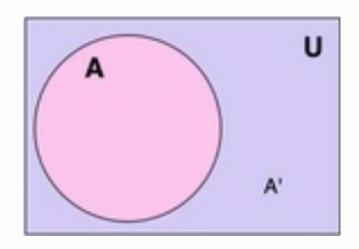
$$\mathbf{A} \otimes \mathbf{B} = (\mathbf{A} - \mathbf{B}) \cup (\mathbf{B} - \mathbf{A}) =$$

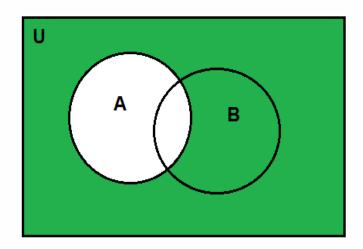
Complement

 The complement of a set A with respect to a universal set U, denoted by A' is defined to be

$$A' = \{x \in U \mid x \notin A\}; A' = U - A$$

Venn diagram:





Let **U** be a universal set, and **A** is a subset of **U**.

$$U = \{ 1, 2, 3, 4, 5, 6, 7 \}; A = \{ 2, 4, 6 \}$$

$$A' = U - A =$$

Set Identities

(or Properties of Set)

Let all sets referred to below be subsets of a universal set, U.

1) Commutative laws: For all sets A and B,

a)
$$A \cup B = B \cup A$$

b)
$$A \cap B = B \cap A$$

2) Associative laws: For all sets A, B and C,

a)
$$(A \cup B) \cup C = A \cup (B \cup C)$$

b)
$$(A \cap B) \cap C = A \cap (B \cap C)$$

3) Distributive laws: For all sets A, B and C,

a)
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

b)
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

- 4) Identity laws: For all sets A,
 - a) $\mathbf{A} \cup \emptyset = \mathbf{A}$
 - b) $A \cap U = A$
- 5) Complement laws: For all sets A,
 - a) $A \cup A' = U$
 - b) $A \cap A' = \emptyset$

6) Double Complement law: For all sets A,

$$(A')' = A$$

- 7) Idempotent laws: For all sets A,
 - a) $A \cup A = A$
 - b) $A \cap A = A$
- 8) Universal bound laws: For all sets A,
 - a) **A** ∪ **U** = **U**
 - b) $A \cap \emptyset = \emptyset$

9) De Morgan's laws: For all sets A and B,

a)
$$(A \cup B)' = A' \cap B'$$

b)
$$(A \cap B)' = A' \cup B'$$

10) Absorption laws: For all sets A and B,

a)
$$A \cup (A \cap B) = A$$

b)
$$A \cap (A \cup B) = A$$

11) Complements of **U** and \emptyset :

a)
$$\emptyset' = \mathbf{U}$$

b)
$$U' = \emptyset$$

12) Set difference laws: For all sets A and B,

$$A-B = A \cap B'$$

13) Properties of empty set. For all set A,

a)
$$\mathbf{A} \cup \emptyset = \mathbf{A}$$

b)
$$\mathbf{A} \cap \emptyset = \emptyset$$

Let A, B and C denote the subsets of a set S and let C' denote a complement of C in S. If $A \cap C = B \cap C$ and $A \cap C' = B \cap C'$, then prove that A = B.

Let, A and B be sets. By referring to the set identities, show that:

$$A - (A \cap B) = A - B$$

Generalized Unions & Intersection

Given sets $A_0, A_1, A_2, ...$ that are subsets of a universal set **U** and given a nonnegative integer, n.

$$\bigcup_{i=0}^n A_i = \{x \in \mathbf{U} | x \in A_i \text{ for at least one } i=0,1,2,\dots,n\}$$

$$\bigcup_{i=0}^\infty A_i = \{x \in U | x \in A_i \text{ for at least one nonnegative integer } i\}$$
 Union

$$\bigcap_{i=0}^{n} A_i = \{x \in \mathbf{U} | x \in A_i \text{ for all } i = 0, 1, 2, \dots, n\}$$

$$\bigcap_{i=0}^{\infty} A_i = \{x \in \mathbf{U} | x \in A_i \text{ for all nonnegative integer } i\}$$
Intersection

For each positive integer *i*, let $A_i = \left\{ x \in \mathbb{R} | -\frac{1}{i} < x < \frac{1}{i} \right\} = A_i = \left(-\frac{1}{i}, \frac{1}{i} \right)$.

Find:

- a) $A_1 \cup A_2 \cup A_3$
- b) $A_1 \cap A_2 \cap A_3$

For each positive integer *i*, let $A_i = \left\{ x \in \mathbb{R} | -\frac{1}{i} < x < \frac{1}{i} \right\} = A_i = \left(-\frac{1}{i}, \frac{1}{i} \right)$.

Find:

- a) $A_1 \cup A_2 \cup A_3$
- b) $A_1 \cap A_2 \cap A_3$

Cartesian Product

Given sets A and B, the Cartesian product of A and B, denoted A×B (read "A cross B") is the set of all ordered pairs (a, b), where a is in A and b is in B.

Symbolically:

$$\mathbf{A} \times \mathbf{B} = \{(a, b) \mid a \in \mathbf{A} \text{ and } b \in \mathbf{B}\}$$

Let, **A** and **B** be sets.

$$A = \{a, b\}; B = \{1, 2\}$$

$$A \times B =$$

$$B \times A =$$

Cartesian Product (cont'd)

Notation:

An ordered pair of elements $a \in A$ and $b \in B$ written as (a, b) is a listing of the elements a and b in a specific order.

- \circ The ordered pair (a, b) specifies that a is the first element and b is the second element.
- An ordered pair (a, b) is considered distinct from ordered pair (b, a), unless a = b.
- \circ Example: $(1, 2) \neq (2, 1)$

Cartesian Product (cont'd)

- For any set A, $\mathbf{A} \times \emptyset = \emptyset \times \mathbf{A} = \emptyset$
- If $A \neq B$, then $A \times B \neq B \times A$
- If $|\mathbf{A}| = m$ and $|\mathbf{B}| = n$, then $|\mathbf{A} \times \mathbf{B}| = m * n$

Cartesian Product (cont'd)

The Cartesian product of sets $A_1, A_2,, A_n$ is defined to be the set of all *n*-tuples

$$(a_1, a_2,...a_n)$$
 where $a_i \in A_i$ for $i=1,...,n$;

It is denoted $A_1 \times A_2 \times \times A_n$

$$|A_1 \times A_2 \times \times A_n| = |A_1|.|A_2|....|A_n|$$

Let, A, B and C be sets.

$$A = \{a, b\}; B = \{1, 2\}, C = \{x, y\}$$

$$\mathbf{A} \times \mathbf{B} \times \mathbf{C} =$$

$$|\mathbf{A} \times \mathbf{B} \times \mathbf{C}| =$$

Let, C, D and E be sets.

$$C = \{1, 3\}; D = \{2, 4, 6\}; E = \{a, b\}$$

Find:

- a) $\mathbf{C} \times \mathbf{D} = ?$
- b) $\mathbf{D} \times \mathbf{C} = ?$
- c) Is $\mathbf{C} \times \mathbf{D} = \mathbf{D} \times \mathbf{C}$?
- d) $(\mathbf{C} \times \mathbf{D}) \times \mathbf{E} = ?$
- e) |**C**×**D**|=?
- f) $|\mathbf{C} \times \mathbf{D} \times \mathbf{E}| = ?$

Example - Solution:

- a) **C**×**D** =
- b) **D**×**A** =
- c) Since $C \neq D$, therefore $C \times D \neq D \times C$
- d) $(\mathbf{C} \times \mathbf{D}) \times \mathbf{E} =$

- e) |C| = 2, |D| = 3, $|C \times D| = 1$
- f) |**C**×**D** ×**E** |=

EXERCISES

Given sets,

$$U = \{ a, b, c, d, e, f, g, h, i, j, k, l, m \}$$

$$A = \{ a, c, f, m \}$$

$$\mathbf{B} = \{ b, c, g, h, m \}$$

Find:

- i) $\mathbf{A} \cup \mathbf{B}$
- ii) $A \cap B$
- iii) $|\mathbf{A} \cup \mathbf{B}|$
- iv) A B
- v) **A'**

Let the universal set, **U**={1, 2, 3, 4,....,10}.

Let a set $A=\{1, 4, 7, 10\}$, $B=\{1, 2, 3, 4, 5\}$ and $C=\{2, 4, 6, 8\}$

List the elements of each set:

- a) **U'**
- b) $B' \cap (C-A)$
- c) $(A \cup B) \cup (C B)$
- d) $(A \cap B) \cup (B C)$

Let A, B and C be sets such that

$$A \cap B = A \cap C$$
 and $A \cup B = A \cup C$

Prove that **B** = **C**

Given sets $A = \{w, x\}$; $B = \{1, 2\}$ and $C = \{KB, SD, PS\}$.

- a) Determine the following set,
 - i) $A \times B$
 - ii) $B \times C$
 - iii) A×C
 - iv) $A \times B \times C$
 - $V) (B \times C) \times A$
 - vi) $A \times B \times (A \times C)$

- b) Find:
 - $|A \times B|$
 - $|B\times C|$
 - iii. $|A \times C|$
 - $|A \times B \times C|$ iv.
 - V. $|\mathbf{B} \times \mathbf{C} \times \mathbf{A}|$
 - $|A \times B \times A \times C|$ vi.