

DISCRETE STRUCTURE (SECI 1013)

2020/2021 – SEMESTER 1 ASSIGNMENT# 1

GROUP 2

AHLI KUMPULAN:

NAMA	NO. MATRIK
1. AHMAD MUHAIMIN BIN AHMAD HAMBALI	A20EC0006
2. MYZA NAZIFA BINTI NAZRY	A20EC0219
3.NUR IRDINA ALIAH BINTI ABDUL WAHAB	A20EC0115

DISERAHKAN KEPADA:

DR. NOR AZIZAH BINTI ALI

1. Let the universal set be the set **R** of all real numbers and let $A = \{x \in \mathbf{R} \mid 0 < x \le 2\}$, $B = \{x \in \mathbf{R} \mid 1 \le x < 4\}$ and $C = \{x \in \mathbf{R} \mid 3 \le x < 9\}$. Find each of the following:

a)
$$A \cup C = \{x \in \mathbb{R} \mid 0 < x < 9\}.$$

b)
$$(A \cup B)' = \{x \in \mathbf{R} \mid 0 \le x \text{ and } x > 3\}$$

c)
$$A' \cup B' = \{ x \in \mathbb{R} | 2 \le x \text{ and } x > 3 \}$$

2. Draw Venn diagrams to describe sets A, B, and C that satisfy the given conditions.

a)
$$A \cap B = \emptyset, A \subseteq C, C \cap B \neq \emptyset$$

b)
$$A \subseteq B$$
, $C \subseteq B$, $A \cap C \neq \emptyset$

3. Given two relations *S* and *T* from *A* to *B*,

$$S \cap T = \{(x,y) \in A \times B \mid (x,y) \in S \text{ and } (x,y) \in T\}$$

$$S \cup T = \{(x,y) \in A \times B \mid (x,y) \in S \text{ or } (x,y) \in T\}$$

Let $A = \{-1, 1, 2, 4\}$ and $B = \{1,2\}$ and defined binary relations S and T from A to B as follows:

For all
$$(x,y) \in A \times B$$
, $x \mid S \mid y \leftrightarrow |x| = |y|$

For all
$$(x,y) \in A \times B$$
, $x T y \leftrightarrow x - y$ is even

State explicitly which ordered pairs are in $A \times B$, S, T, $S \cap T$, and $S \cup T$.

- $A \times B = \{(-1, 1), (-1, 2), (1, 1), (1, 2), (2, 1), (2, 2), (4, 1), (4, 2)\}$
- $S = \{(-1, 1), (1,1), (2,2)\}$
- $T = \{(-1, 1), (1,1), (2,2), (4,2)\}$
- $S \cap T = \{(-1, 1), (1,1), (2,2)\}$
- $S \cup T = \{(-1, 1), (1,1), (2,2), (4,2)\}$

Show that $\neg ((\neg p \land q) \lor (\neg p \land \neg q)) \lor (p \land q) \equiv p$. State carefully which of the laws are used at each stage.

From LHS:

$$\neg ((\neg p \land q) \lor (\neg p \land \neg q)) \lor (p \land q) \equiv p$$

$$= ((\neg \neg p \lor \neg q) \land q) \land \neg (\neg p \land \neg q)) \lor (p \land q)$$

$$= ((\neg \neg p \lor \neg q) \land (p \lor q)) \lor (p \land q)$$

$$= ((p \lor \neg q) \land (p \lor q)) \lor (p \land q)$$

$$= P \lor (\neg q \land q) \lor (p \land q)$$

$$= P \lor (q \land \neg q) \lor (q \land p)$$

$$= P \lor q \land (\neg q \lor p)$$

$$= (p \lor q) \land (p \lor \neg q)$$

$$= P \lor (q \land \neg q)$$

$$= P \lor ($$

5. a) the matrix A_1 of the relation R_1

 A_1 = {(1,1), (1,2), (1,3), (1,4), (1,5), (2,1), (2,2), (2,3), (2,4), (3,1), (3,2), (3,3), (4,1), (4,2), (5,1)}

$$A_1 = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

b) the matrix A_2 of the relation R_2

$$A_2 = \{(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4)\}$$

$$A_2 = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \end{bmatrix}$$

c) is R_1 reflexive, symmetrix, transitive and/or equivalence relation?

-it's not reflexive because the diagonal does not all have value 1.

- its symmetrix for $(x, y) \in R$, $(y, x) \in R$.

 $M_R \neq M_R$ so it is not transitive.

: it is not equivalence relation because it is not reflexive and not transitive.

d) is reflexive, antisymmetric, transitive and/or a partial order relation.

: it is not reflexive because the diagonal does bot all have value 1

 \therefore it is not antisymmetric for a \neq b (b, a) not belong to R

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \end{bmatrix} \quad \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \end{bmatrix}$$

 \therefore it is not transitive because $M_R \neq M_R$.

: it is not partial order relation because it is not reflexive and not transitive

6.

$$R_{1} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \quad R_{1} = \{(1,1), (2,2), (2,3), (3,1), (3,3)\}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \quad R_{2} = \{(1,1), (2,2), (2,3), (3,1), (3,1)\}$$

(a) the matrix of relation $R_1 \cup R_2$

$$R_1 \ \mathbf{U} \ R_2 = \{(1,1), (1,2), (2,2), (2,3), (3,1), (3,3)\}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

(b) the matrix of relation $R_1 \cap R_2$

$$R_1 \cap R_2 = \{(1,1), (2,2), (3,1), (3,3)\}$$

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

7. If $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ are both one-to-one, is f + g also one-to-one? Justify your answer.

Solution:

$$(f+g)(x) = f(x) + g(x)$$

Let us assume;

$$(f+g)(a) = (f+g)(b)$$
 => for some arbitrary $a, b \in \mathbf{R}$
 $f(a) + g(a) = f(b) + g(b)$
 $f(a) = f(b)$ => because f is one-to-one
 $g(a) = g(b)$ => because g is one-to-one
 $a = b$

∴ Since $a,b \in R$ were arbitrary, this means $\forall a,b \in R$ and a = b are proven.

Therefore, f+g is one-to-one

8. With each step you take when climbing a staircase, you can move up either one stair or two stairs. As a result, you can climb the entire staircase taking one stair at a time, taking two at a time, or taking a combination of one- or two-stair increments. For each integer $n \ge 1$, if the staircase consists of n stairs, let c_n be the number of different ways to climb the staircase. Find a recurrence relation for c_1, c_2, \ldots, c_n .

Solution:

Let c_n = number of different ways

- \Rightarrow When n = 1, move up 1 stair
- \Rightarrow When n = 2, move up 2 stairs
- \Rightarrow When $n \ge 3$, move up more than 2 steps so use both 1 and 2 stairs

Let when last step is 1 stair, then c_{n-1} ways to arrive

Let when last step is 2 stairs, then c_{n-2} ways to arrive

Since c_n is number of different ways,

$$c_1 = 1, c_2 = 2$$

$$c_n = c_{n-1} + c_{n-2}$$
, when $n \ge 3$

9. The Tribonacci sequence (*tn*) is defined by the equations,

$$t0 = 0$$
,

$$t1 = t2 = 1$$
,

$$tn = tn-1 + tn-2 + tn-3$$
 for all $n \ge 3$.

(a) Find t₇

Solution:

$$t_3 = t_2 + t_1 + t_0$$

= 1 + 1 + 0
= 2

$$t_4 = t_3 + t_2 + t_1$$
$$= 2 + 1 + 1$$
$$= 4$$

$$t_5 = t_4 + t_3 + t_2$$

= 4 + 2 + 1
= 7

$$t_6 = t_5 + t_4 + t_3$$

= 7 + 4 + 2
= 13

b) Write a recursive algorithm to compute tn, $n \ge 3$.

Solution:

Input:
$$n$$
, Output: $t(n)$
 $t(n)$
{if $(n = 1 \text{ or } n = 2)$
return 1
return $t(n-1) + t(n-2) + t(n-3)$ }