

SEMESTER I 2020/2021

DISCRETE STRUCTURE (SECI1013-03)

ASSIGNMENT 4

LECTURER'S NAME: DR. NOR AZIZAH ALI

GROUP MEMBERS:

NAME	MATRIC NO.
ADAM WAFII BIN AZUAR	A20EC0003
AHMAD MUHAIMIN BIN AHMAD HAMBALI	A20EC0006
FARAH IRDINA BINTI AHMAD BAHARUDIN	A20EC0035
NURARISSA DAYANA BINTI MOHD SUKRI	A20EC0120

SECI1013: DISCRETE STRUCTURE

ASSIGNMENT 4

1. Let G be a graph with $V(G) = \{1, 2, ..., 10\}$, such that two numbers 'v' and 'w' in V(G) are adjacent if and only if $|v - w| \le 3$. Draw the graph G and determine the numbers of edges, e(G).

Number of edges, e(G) = 24

- 2. Model the following situation as graphs, draw each graph and gives the corresponding adjacency matrix.
 - (a) Ahmad and Bakri are friends. Ahmad is also friends with David and Chong. David, Bakri and Ehsan all friends.

(Note that you may use the representation of A= Ahmad; B = Bakri; C = Chong; D = David; E= Ehsan)

 \therefore Edges corresponding to people that are friends = (A, B), (A, D), (A, C), (D, B), (D, E), (B, E)

$$A = \begin{pmatrix} A & B & C & D & E \\ A & \begin{bmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ D & 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

- (b) There are 5 subjects to be scheduled in the exam week: Discrete Mathematics (DM), Programming Technique (PT), Artificial Intelligence (AI), Probability Statistic (PS) and Information System (IS). The following subjects cannot be scheduled in the same time slot:
 - i. DM and IS
 - ii. DM and PT
 - iii. AI and PS
 - iv. IS and AI
 - ∴ Edges that cannot be scheduled in the same time slot = (DM, IS), (DM, PT), (AI, PS), (IS, AI)

$$A = \begin{bmatrix} DM & PT & AI & PS & IS \\ DM & 0 & 0 & 0 & 1 & 1 \\ PT & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \end{bmatrix}$$

3. Show that the two drawing represent the same graph by labeling the vertices and edges of the right-hand drawing to correspond to left-hand drawing.

Answer:

4. Find the adjacency and incidence matrices for the following graphs.

Graph	Adjacency Matrix	Incidence Matrix
v_1 v_2 v_4	$\begin{bmatrix} v_1 & v_2 & v_3 & v_4 \\ v_1 & \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ v_3 & \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \end{bmatrix}$	$\begin{bmatrix} & e_1 & e_2 & e_3 & e_4 & e_5 & e_6 \\ v_1 & v_2 & \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ v_4 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$
H: e_1 v_1 e_3 v_2 e_5 v_3 e_6	$\begin{bmatrix} v_1 & v_2 & v_3 & v_4 \\ v_1 & v_2 & \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 2 \\ v_3 & v_4 & \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 2 & 0 & 0 \end{bmatrix} \end{bmatrix}$	$\begin{bmatrix} e_1 & e_2 & e_3 & e_4 & e_5 & e_6 \\ v_1 & v_2 & \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}$

5. Determine whether the following graphs are isomorphic.

 G_{I}

Yes, G1 and G2 are isomorphic because

Vertices

 $\circ G_1 = 5$ vertices

 $\circ G_2 = 5$ vertices

• Edges

 $\circ G_1 = 5 \text{ edges}$

 $\circ G_2 = 5$ edges

• Degree of each vertex

 $\circ G_1$ = a vertex having degree of 1, 3 vertices having degree of 2 and a vertex having degree of 3

o G₂ = a vertex having degree of 1, 3 vertices having degree of 2 and a vertex having degree of 3

• Incident function, f: $G_1 \rightarrow G_2$, where $G_1 = \{v_1, v_2, v_3, v_4, v_5\}$ and $G_2 = \{u_1, u_2, u_3, u_4, u_5\}$ $f(v_1) = u_5, f(v_2) = u_4, f(v_3) = u_2, f(v_4) = u_3, f(v_5) = u_1$

b)

No, because degree of each vertex in both graphs are different

- $H_1 = 2$ vertices having degree of 1, a vertex having degree of 2, a vertex having degree of 3 and a vertex having degree of 5
- H_2 = a vertex having degree of 1, a vertex having degree of 2 and 3 vertices having degree of 3

6. In the graph below, determine whether the following walks are trails, paths, closed walks, circuits/cycles, simple circuits or just walks.

i. $v_0 e_1 v_1 e_{10} v_5 e_9 v_2 e_2 v_1$

trail because vertex is repeated and edge is not

ii. $v_4 e_7 v_2 e_9 v_5 e_{10} v_1 e_3 v_2 e_9 v_5$

Just walk because vertex and edge are repeated

iii. v_2 Trivial walk because single vertex

iv. $v_5 e_9 v_2 e_4 v_3 e_5 v_4 e_6 v_4 e_8 v_5$

Circuit/cycle because start and end at the same vertex and not contain a repeated edge

v. $v_2e_4v_3e_5v_4e_8v_5e_9v_2e_7v_4e_5v_3e_4v_2$

Closed walk because start and end at the same vertex and contain repeated edge

vi. $v_3 e_5 v_4 e_8 v_5 e_{10} v_1 e_3 v_2$

Path because not contain any repeated vertex and edge

7. Consider the following graph.

- a) How many paths are there from $v_1 to v_4$?
 - 1.(v1,e1,v2,e2,v3,e5,v4)
 - 2.(v1,e1,v2,e3,v3,e5,v4)
 - 3.(v1,e1,v2,e4,v3,e5,v4)
 - = 3 paths
- b) How many trails are there from $v_1 to v_4$?
 - 1.(v1,e1,v2,e2,v3,e5,v4)
 - 2.(v1,e1,v2,e3,v3,e5,v4)
 - 3.(v1,e1,v2,e4,v3,e5,v4)
 - 4. (*v*1,*e*1,*v*2,*e*2,*v*3,*e*3,*v*2,*e*4,*v*3,*e*5,*v*4)
 - 5. (v1,e1,v2,e4,v3,e3,v2,e2,v3,e5,v4)
 - 6. (v1,e1,v2,e3,v3,e2,v2,e4,v3,e5,v4)
 - 7. (v1,e1,v2,e3,v3,e4,v2,e2,v3,e5,v4)
 - 8. (v1,e1,v2,e2,v3,e4,v2,e3,v3,e5,v4)
 - 9. (v1,e1,v2,e4,v3,e2,v2,e3,v3,e5,v4)
 - = 9 trails
- c) How many walks are there from $v_1 tov_4$? undefined because edge and vertex are allowed to repeat.

8. Determine which of the graphs in (a) - (b) have Euler circuits. If the graph does not have a Euler circuit, explain why not. If it does have a Euler circuit, describe one.

(a) has Euler circuit because every vertex has even degree

Vertex	V1	V2	V3	V4	V5
Degree	2	4	2	4	4

 $(V_1, e_1, V_2, e_2, V_5, e_3, V_2, e_4, V_3, e_5, V_4, e_6, V_5, e_7, V_4, e_8, V_1)$

(b) does not have Euler circuit because there are vertices have odd degree

Vertex	Vo	V1	V2	V3	V4	V5	V6	V 7	V8	V9
Degree	2	5	2	2	2	4	2	3	3	3

9. For each of graph in (a) - (b), determine whether there is an Euler path from to . If there is, find such a path.

- a) Euler path for graph in (a)
 - $= u, v_1, v_0, v_7, u, v_2, v_3, v_4, v_2, v_6, v_4, w, v_5, v_6$
- b) Euler path will not exist because
- 10. For each of graph in (a) (b), determine whether there is Hamiltonian circuit. If there is, exhibit one.
 - a) There is no Hamiltonian circuit for graph in (a).
 - b) There is no Hamiltonian circuit for graph in (b).

11. How many leaves does a full *3-ary* tree with 100 vertices have?

$$1 = \frac{[(m-1)n]+1}{3}$$

$$= \frac{[(3-1)100]+1}{3}$$

= 67

12. Find the following vertex/vertices in the rooted tree illustrated below.

Figure 1

- a) Root = a
- b) Internal vertices = b, e, g, n, d, h, j
- c) Leaves = c, f, I, k, l, m, o, p, q, r, s
- d) Children of n = r and s
- e) Parent of e = b
- f) Siblings of k = 1 and m
- g) Proper ancestors of q = j, d, a
- h) Proper descendants of b = e, f, g, k, l, m, n, r, s
- 13. In which order are the vertices of ordered rooted tree in **Figure 1** is visited using *preorder*, *inorder* and *postorder*.

Preorder =
$$a, b, e, k, l, m, f, g, n, r, s, c, d, h, o, i, j, p, q$$

Inorder =
$$k$$
, e , l , m , b , f , r , n , s , g , a , c , o , h , d , i , p , j , q

Postorder = k, l, m, e, f, r, s, n, g, b, c, o, h, I, p, q, j, d, a

14. Find the minimum spanning tree for the following graph using Kruskal's algorithm.

Edge	Weight	Will adding edge make circuit?	Action taken	Cumulative weight of subgraph
$e_1 = (A, B)$	1	No	Added	1
$e_2 = (G, H)$	1	No	Added	2
$e_3 = (B, C)$	2	No	Added	4
$e_4 = (A, F)$	3	No	Added	7
$e_5 = (B, F)$	4	Yes	Not added	7
$e_6 = (C, D)$	4	No	Added	11
$e_7 = (B, G)$	5	No	Added	16
$e_8 = (C, G)$	6	Yes	Not added	16
$e_9 = (D, H)$	6	Yes	Not added	16
$e_{10} = (G, D)$	7	Yes	Not added	16
$e_{11} = (D, E)$	7	No	Added	23
$e_{12} = (F, G)$	8	Yes	Not added	23
$e_{13} = (H, E)$	8	Yes	Not added	23

The minimum spanning tree:

15. Use Dijkstra's algorithm to find the shortest path from \mathbf{M} to \mathbf{T} for the following graph.

Iteration	S	N	L(M)	L(N)	L(O)	L(P)	L(Q)	L(R)	L(S)	L(T)
0	{}	{M, N, O, P, Q, R, S, T}	8	8	8	8	8	8	8	8
1	{M}	{N, O, P, Q, R, S, T}	0	4	8	2	8	5	8	8
2	{M, P}	{N, O, Q, R, S, T}	0	4	8	2	6	5	5	8
3	$\{M, P, N\}$	$\{O, Q, R, S, T\}$	0	4	10	2	6	5	5	8
4	$\{M, P, N, R\}$	$\{O, Q, S, T\}$	0	4	7	2	6	5	5	6
5	$\{M, P, N, R, S\}$	$\{O, Q, T\}$	0	4	7	2	6	5	5	6
6	{M, P, N, R, S, Q}	{O, T}	0	4	7	2	6	5	5	6

[∴] Shortest path: M \rightarrow R \rightarrow T and the length is 6.