

DISCRETE STRUCTURE (SECI 1013-03)

SEMESTER 1-2020/2021

ASSIGNMENT 3

GROUP 5

GROUP MEMBERS:

NAME	MATRIC NO.
1. KELVIN EE	A20EC0195
2. LEE CAI XUAN	A20EC0062
3. RASMIN KAUR SANDHU	A19ET0216

LECTURER'S NAME:

DR. NOR AZIZAH BINTI ALI

ai.
$$A-B = \{1, 3, 4, 6, 7, 8\}$$

ii.
$$(A \cap B) \cup C = \{2, 5, a, b\}$$

iii.
$$A \cap B \cap C = \emptyset$$

iv.
$$B \times C = \{(2, a), (2, b), (5, a), (5, b), (9, a), (9, b)\}$$

v.
$$P(C) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$$

b)
$$(P \cap ((P' \cup Q)')) \cup (P \cap Q)$$

= $(P \cap (P \cup Q')) \cup (P \cap Q)$ (De Morgan's law)
= $P \cup (P \cap Q)$ (Absorption law)
= P (Absorption law)

c)
$$\mathbf{A} = (\neg p \lor q) \leftrightarrow (q \rightarrow p)$$

p	q	$\neg p$	$(\neg p \lor q)$	$(q \rightarrow p)$	$(\neg p \lor q) \leftrightarrow (q \rightarrow p)$
T	T	F	T	T	T
T	F	F	F	T	F
F	T	T	T	F	F
F	F	T	T	T	Т

d) let
$$x = 3$$
 let $x = 5$ $(3 + 2)^2 = 25$ (odd) $(5 + 2)^2 = 49$ (odd)

let a = odd integer

$$a = 2n + 1$$

$$(a+2)^2 = ((2n+1)+2))^2$$
 let $(2n^2 + 6n + 4) = m$
= $(2n+3)^2$ $(a+2)^2 = 2m+1$
= $2((2n^2 + 6n + 4) + 1$ $(a+2)^2$ is an odd integer

ei) $\exists x \exists y P(x, y)$

There are some x, positive integer and some y, positive integer where $x \ge y$. This statement is true.

ii) $\forall x \forall y P(x, y)$

For all x, positive integer and all y, positive integer where $x \ge y$.

This statement is false because when x = 5 and y = 6, x < y. There are at least one x is smaller than y.

- ai) Domain = $\{1, 2, 3\}$ Range = $\{1, 2\}$
 - ii) The relation is not irreflexsive because (1,1), (2,2) ∈ R but (3,3) ∉ R.
 The relation is antisymmetric because (1,2) ∈ R but (2,1) ∉ R and (1,1), (2,2) ∈ R but (3,3) ∉ R.

bi) set
$$S = \{(4,5), (5,4), (5,5)\}$$

ii) S is not reflexive because (5,5) \in R but (1,1), (2,2), (3,3), (4,4) \notin R.

S is symmetric because $M_R = M_R^T$.

S is not transitive because $M_R \times M_R \neq M_R$.

S is not an equivalence relation because S is symmetric but is not reflexive and not transitive.

ci)
$$f = \{(1,1), (2,2), (3,3)\}$$

ii)
$$g = \{(1,1), (2,2), (3,2)\}$$

iii)
$$h = \{(1,1), (2,1), (3,2)\}$$

di)
$$m(x) = 4x + 3$$

let
$$y = 4x + 3$$
 $m^{-1}(x) = \frac{y-3}{4}$
 $4x = y - 3$

$$x = \frac{y-3}{4}$$

ii)
$$nm(x) = n(4x + 3)$$

= $2(4x + 3) - 4$
= $8x + 6 - 4$
= $8x + 2$

```
Question 3
```

ai)
$$a_1 = 1$$
 $a_2 = a_1 + 2(2)$ $a_3 = a_2 + 2(3)$
= 1 + 4 = 5 + 6
= 5 = 11

ii) Input: k

Output:
$$f(k)$$

 $f(k)$ {
 if $(k = 1)$
 return 1
 return $f(k - 1) + 2k$

b)
$$r_1 = 7$$
 $r_k = 2r_{k-1}$ where $k > 1$

c)
$$S(1) = 5$$

}

$$S(2) = 5*(S(1))$$
 $S(3) = 5*(S(2))$ $S(4) = 5*(S(3))$
= 5*5 = 5*25 = 5*125
= 25 = 125 = 625

a) First digit: 3 through B = 9 ways

Last digit:5 through
$$F = 11$$
 ways

$$9 \times 16 \times 16 \times 11 = 25344$$

- b) $1 \times 26^3 \times 10^2 \times 1 = 1757600$
- c) Three letters = $8 \times 7 \times 6$

$$8+336+56=400$$

$$= 336$$

Two letters =
$$8 \times 7$$

One letter = 8

d) $7C4 \times 6C3 = 700$

e)
$$P(11) = \frac{11!}{2!2!}$$

= 9979200

f)
$$C(10 + 6 - 1,10) = C(15,10)$$

= $\frac{15!}{10!5!}$

$$= 3003$$

a)
$$k = 2 \times 3 = 6$$

$$n = 18$$

$$\frac{n}{k} = \frac{18}{6} = 3$$
 people with same first name and last name

b) Odd number from 1 to 20 = 1, 3, 5, 7, 9, 11, 13, 15, 17, 19

Probability of getting an odd number = 0.5

10 + 1 = 11 (Pick at least 11 number to be sure of getting at least one that is odd)

c) There are 20 integers from 1 through 100 that are divisible by 5.

$$100 - 20 = 80$$

80 + 1 = 81 (Pick at least 81 to be sure of getting one that is divisible by 5)