

SCSR1013 DIGITAL LOGIC

MODULE 1: INTRODUCTORY CONCEPTS

2019/2020-1

FACULTY OF COMPUTING

www.utm.my

Digital and Analog Quantities

CONTENTS

עש.utm.my

MODULE 1: DIGITAL LOGIC OVERVIEW

Digital and Analog Quantities

Binary Digits, Logic Levels and Digital Waveform
Introduction to Logic Operations
Overview of Logic Functions
Fixed-Function IC
Programmable Logic Devices (PLD)

2

Analog quantities

- Most natural quantities that we see are analog and vary continuously.
- Analog systems can generally handle higher power than digital systems.

Digital quantities

Example:

- Band Width (BW) = 1Mbps (Mega Bits Per Second)
- Storage RAM = 512MB (Mega Byte)
- Hard Disk = 160GB (Giga Byte)

 Digital systems can process, store, and transmit data more efficiently but can only assign discrete values (discontinuous) to each point.

Analog

- Use base 10 (decimal)
- Represented by 10 different level:
 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.
- Analog system: A combination of devices that manipulate values represented in analog form

Resource: Floyd, Digital Fundamentals, 10th Edition

Temperature

100

95

5

6

Analog vs Digital

Example of sampling analogto-digital (frequency at least 2 times higher than analog)

ORIGINAL ANALOG
SIGNAL

DIGITAL
ANALYSIS OF
SIGNAL

DIGITAL
ASSIGNMENTS OF
SIGNAL

DIGITAL
ASSIGNAL

DIGITAL
ASSIGNAL

POPSIGNAL

http://www.geardiary.com/2011/04/01/music-diary-notes-the-brave-newworld-of-digital-music/digital_sampling/

lower sample rates take fewer snapshots of the waveform

resulting in a rough recreation of the waveform.

faster sample rates take more snapshots....

resulting in a smoother and more detailed recreation of the waveform.

http://musicandcomputers306.blogspot.com/2010/10/waveforms-ad-conversion-sampling.html

Answer

Resource: Google searched

(d)

9

Resource: Google searched

10

Example: Analog systems

Example: Digital systems

Resource: Google searched Resource: Google searched

Digital

- Digital technology is relatively new compared to analog technology, but a lot of analog systems has been changed to a digital systems, Examples:
 - Computers
 - Manufacturing systems
 - Medical Science
 - Transportation
 - Entertainment
 - **Telecommunications**

*DSL-2320B (ADSL Modem)

Exercise: Match the picture to which digital

application system it belong to.

(e)

intel

(a)

- (a) Computers
- (b) Manufacturing systems
- (c) Medical Science
- (d) Transportation
- (e) Entertainment
- (f) Telecommunications

http://www.tvjuneau.com/images/HDTV-Resolutions_Full.jpg

Resource: http://www.wirelessnetworkproducts.com/dsl-2320b.aspx

13

15

Resource: http://www.wirelessnetworkproducts.com/dsl-2320b.aspx

Digital

The Digital Advantages

- Ease of design
- Ease of storage
- Accuracy and precision are easier to maintain
- Programmable operation
- Less affected by noise
- Ease of fabrication on IC chips
 - ☐ Thus, the digital systems is more efficient and reliable for:
 - Data Processing
 - Data Transmission
 - Data Storage

Digital Disadvantages

Greater bandwidth

Sampling error

Sampling Error (Quantization Error): is derived from Analog to Digital Conversion Process:

Bit 0 and 1

Compatibility with existing analog systems

Sampling & Quantization

Short product half life

Analog and Digital Systems

- Many systems use a mix of analog and digital electronics to take advantage of each technology.
- A typical CD player accepts digital data from the CD drive and converts it to an analog signal for amplification.

Resource: Floyd, Digital Fundamentals, 10th Edition

18

Hybrid System

- The audio CD is a typical hybrid (Analog & Digital) system.
 - · Analog sound is converted into analog voltage using a microphone.
 - · Analog voltage is changed into digital through an ADC in the recorder.
 - Digital information is stored on the CD.
 - At playback the digital information is changed into analog by a DAC in the CD player.
 - The analog voltage is amplified and used to drive a speaker that produces the original analog sound.

- Convert digital sound (CD) to analog
- Process (amplify) the analog information
- Convert the analog signal to sound

Resource: Floyd, Digital Fundamentals, 10th Edition

HIGH SPEED Converters

Conversion:

Analog to Digital Converter (ADC):

Error will occur during the sampling and quantization, hence loss of information can happen.

Digital to Analog Converter (DAC):

- · Needed if the speaker is using analog system.
- Need to convert the digital data to analog signal in order for the speaker works properly and the sound can heard by human.

www.utm.mu

Digits, Logic Levels and Digital Waveform

Digital electronics uses circuits that have two states, which are represented by two different voltage levels:

- HIGH (bit 1)
- LOW (bit 0)

A bit can have the value of either a 0 or a 1, depending on if the voltage is **HIGH** or **LOW**.

Resource: Floyd, Digital Fundamentals, 10th Edition

22

- A positive going pulse is one that goes from a normally LOW logic level to a HIGH level and then back again.
- Digital waveforms are made up of a series of pulses.

(a) Positive-going pulse

Positive Logic (active high)

High =
$$I$$
 (Bit I)
Low = 0 (Bit 0)

Digital Waveforms

Symbols to show the input state of "active high" and "active low":

"active high"

"active low"

• Two type of squarewave

Periodic

· The signal keep on repeating after a period of time

Non-Periodic / Aperiodic

· Doesn't have a period

25

Periodic signal

Aperiodic signal

Periodic Signal Parameter

☐ Frequency (f) is the rate at which the signal repeat itself at a fixed interval. Is measured in cycles per second or Hertz (Hz)

 $f = \frac{1}{T}$ Hz

☐ Period (T) is the time from the edge of one pulse to the corresponding edge of the next pulse. Is measured in second

$$T = \frac{1}{f}$$
 seconds

■ Example:

■ clock frequency: f = 100Hz, so, period: T = 1/100Hz = 0.01s = 10x 10⁻³ = 10 ms

> $s \rightarrow ms (x 10^3)$ $ms \rightarrow s (x 10^{-3})$

Some examples of periodic signal display on the oscilloscope:

(a) Square waveform

(b) Sinusoid waveform

Metric Conversion Chart

Unit Conversion

- Kilo (K)= 10³
- Mega (M)= 10⁶
- Giga (G)= 10⁹
- Tera (T)= 10^{12}
- Mili (m)= 10⁻³
- Micro (μ) = 10⁻⁶
- Nano (n)= 10-9
- Piko (p) = 10^{-12}

29

30

- Mili (m)= 10⁻³
- Micro (μ) = 10-6
- Nano (n)= 10-9
- Piko (p) = 10^{-12}

Exercise 1.1: Calculate the frequency of signals if time period are given as the following:

Example:
$$f = 100KHz$$
, So $T = 1/f$

 $= 1/(100*10^3$ Hz)

 $= 0.01*10^{-3} s$

= 0.01 ms

 $= 10 \mu s$

$$= (0.01 * 10^{-3}) \text{ s x } 10^{6}$$
$$= (0.01 * 10^{-3+6}) \text{ us}$$

 $= (0.01 * 10^3) \mu s$

 $= 10 \mu s$

a) $10ms = ____Hz$

b) $100 ms = _KHz$

c) $100ns = ____MHz$

d) $1000ps = ____GHz$

 $= (0.01 * 10^{-3}) \text{ s x } 10^{3}$ $= (0.01 * 10^{-3+3}) \text{ ms}$

 $= (0.01 * 10^{313}) \text{ ms}$ = $(0.01 * 10^{0}) \text{ ms}$ = 0.01 ms

- a) $1000KHz = ____ms$
- b) 100MHz = ns
- c) 1000*GHz* = _____*ps*
- d) 100*THz* = ____*ps*

Pulse Definition

- Pulse is a rapid, transient change in the amplitude of a signal from a baseline value to a higher or lower value, followed by a rapid return to the baseline value.
- Pulse width (t_w) : A measure of the duration of the pulse.

• Rise time and fall time is a measure of how fast the pulse change.

Overshoot

Resource: Floyd, Digital Fundamentals, 10th Edition

34

Repetitive Pulse Waveform

- In addition to frequency and period, repetitive pulse waveforms are described by the amplitude (A), pulse width (t_W) and duty cycle.
- Duty cycle is the ratio of t_W to T.

Duty Cycle

□ Duty cycle is the fraction of time that a system is in an "active" state (operated), defined as

Duty cycle =
$$(t_w/T)100\%$$

Example: a periodic digital waveform has a pulse width (t_w) 1ms and period time (T) 10ms, calculate duty cycle?

Duty cycle = 1ms/10ms * 100% = 10%

Exercise 1.3: Given the duration or period of a system is 1000ms, determine the *on state* and *off state* of the system that operate with the ratio of duty cycle is 25%. Show your works.

Solution 1.3:

Duty cycle → on state

$$= 25\% \ \ 1000ms = \frac{25}{100} \ \ 1000ms = \frac{1}{4} \ \ 1000ms = 250ms$$

Off state : = 1000ms - 250ms = 750ms

Exercise 1.4: Given the duration or period of a system is 1000ms, determine the *on state* and *off state* of the system that operate with the ratio of duty cycle is 50%. Show your works.

Solution 1.4:

Duty cycle → on state

$$= 50\% \ 1000ms = \frac{50}{100} \ 1000ms = \frac{1}{2} \ 1000ms = 500ms$$

Off state : = 1000ms - 500ms = 500ms

(module: page 18) 37 (module: page 18) 38

Exercise 1.5: Given the *duty cycles* of a system is 40% for a duration of a system is 500ms.

- a) Calculate the pulse width of the system.
- b) Determine the *off state* of the system that operate with the ratio of duty cycle.

Show your works.

Solution 1.5:

a)
$$DutyCycle = (\frac{t_W}{T})100$$
$$40 = (\frac{t_W}{500})100$$
$$t_W = \frac{40(500)}{100} = 200s$$

b)
$$Period = 500ms$$

 $OnState = t_W = 200ms$
 $\searrow 500 - 200 = 300ms$

39

A timing diagram is used to show the relationship between two or more digital waveforms,

A diagram like this can be observed directly on a logic analyzer.

At time 8, all A, B, and C LOW

Timing diagram

Example: Timing Diagram

Example: Timing Diagram

Clock	Input		Output	
(↑)	Α	В	С	
1	1	0	0	
2	0	1	0	
3	1	1	0	
4	0	0	1	
5	1	0	1	
6	0	1	1	
7	1	1	1	
8	0	0	0	

Exercise: Complete the truth table.

Resource: Floyd, Digital Fundamentals, 10th Edition

41

Resource: Floyd, Digital Fundamentals, 10th Edition

42

Data Transfer

աաա.սւm.my

Data can be transmitted by either **serial** transfer or **parallel** transfer.

Introduction to Logic Operations

Basic logic function

True only if **all** input conditions are true.

True only if **one or more** input conditions are true.

NOT

Indicates the *opposite* condition (inverter).

Logic Gates: NOT

NOT operation

Truth table shows the relationship between output and the input.

Truth Table for NOT

Х	Z
0	1
1	0

7404 IC six inverters

Resource: Floyd, Digital Fundamentals, 10th Edition

45

46

Logic Gates: AND

AND operation

Truth Table AND

7408 IC four (Quad) AND gates

Logic Gates: OR

OR operation

	X	Υ	Z
	0	0	0
Truth Table OR	0	1	1
	1	0	1
	1	1	1

7432 integrated circuit provides four (Quad) two-inputs OR gates

Logic Gates:

Summary

www.utm.my

Overview of Logic Functions

Resource: http://www.chem.uoa.gr/applets/appletgates/Images/Image1.gif

49

50

Basic Logic Functions

- Any digital systems has one or more of the following function.
 - ☐ This functions are built from the basic gates.
 - · Comparison Function
 - · Arithmetic Functions
 - Code conversion function
 - Encoding function
 - · Decoding function
 - Data selection function
 - Data storage function
 - · Counting function

Comparison Function

(a) Basic magnitude comparator

(b) Example: A is less than B (2 < 5) as indicated by the HIGH output (A < B)

Arithmetic Functions

Adder

- Subtractor
- Multiplier
- Division

All the other arithmetic operations can be derived from adder:

- ☐ Subtraction is and addition of negative number such as A−B = A+(-B)
- ☐ Multiplication is a repeated addition such as A*3=A+A+A
- □ Division is a repeated subtraction which is a repeated addition such as 6/3=6-3-3=6+(-3)+-(3)
 - subtract until the remainder = 0
 - total number of subtraction = 2 which is the answer

Resource: Floyd, Digital Fundamentals, 10th Edition

53

54

Code Conversion Function

- A code is a set of bits arranged in a unique pattern and used to represent specified information.
 - Examples : BCD, ASCII
- The usage of codes allow a faster and more efficient data processing.

http://depositphotos.com/2746252/stock-illustration-Arabic-alphabet.htm

^{*} ASCII code 127 has the code DEL. Under MS-DOS, this code has the same effect as ASCII 8 (BS)
The DEL code can be generated by the CTRL + BKSP key

Encoding & Decoding Function

The encoding function

The decoding function

Resource: Floyd, Digital Fundamentals, 10th Edition

58

Data Selection Function: MUX & DeMUX

Problem:

Many inputs (e.g. A, B and C) wanted to use a single transmission line for their data transmission. How to make sure the data is transferred in a proper manner (issue of cost, synchronization, conflict, crash, loss?)

Source (A, B, C) and Destination (D, E, F) $A \rightarrow D$. $B \rightarrow E$. $C \rightarrow F$

Solution:

Select and permit only one device can use the line and transfer its data at one time.

Data in the transmission line would be arranged as A, B, C

DEMUX: select and route the data to their originate destination $A \rightarrow D, B \rightarrow E, C \rightarrow F$

Data Storage Function

Flip-flop

- Flip-flop stores a 1 or 0 only
- Registers
 - Formed by combining several flip-flops
 - ∘ 8-bit register → from 8 flip-flops
- Semiconductor Memories
 - e.g. RAM, ROM, Flash
- Magnetic/Optical Memories
 - ∘ For mass storage → e.g. hard disk, tape, DVD, Blu-Ray

61

Memories

Counting Function

Counter

Examples:

- Traffic light
- Washing machine
- Vending machine
- Xerox machine
- ATM machine
- etc.
- To count the occurrence at the input.
- to initiate a controller after a certain count (period).

Resource: Floyd, Digital Fundamentals, 10th Edition

62

UTIM UNIVERSITI TEKNOLOGI MALAYSIA

աաա.utm.my

Fixed-Function Integrated Circuit (IC) An example of laboratory prototyping is shown. The circuit is wired using DIP chips and tested.

In this case, testing can be done by a computer connected to the system.

(Dual In-line Package)

IC Packages

DIP chips and surface mount chips

Other surface mount technology (SMT) packages:

Resource: Floyd, Digital Fundamentals, 10th Edition

65

Resource: Floyd, Digital Fundamentals, 10th Edition

66

IC and conventional **through-hole** technology

ttp://aa7ee.wordpress.com/page/4/

Printed Circuit Board (PCB)

Surface Mount PCB

https://neuromorphs.net/ws2007/wiki/si

http://www.pcb-manufacturers.co.uk/pcb-production-examples-c.htm

67

Integrated circuit

Cutaway view of DIP (<u>Dual-In-line Pins</u>) chip:

IC Packaging: Why we need packaging?

- To protect the IC (circuit)
- Have a pin system so that can connect to other circuit

Resource: Floyd, Digital Fundamentals, 10th Edition

Pin Numbering

http://www.rkonlinestore.co.uk/556-dual-timer-ic-16pin-dip-pack-of-4-391-p.asp

70

http://electroschematics.com/6529/7400-datashee

Complexity Classifications for Fixed-Function ICs

- ☐ Small-scale integration (SSI) have up to 12 gates on a single chip
- ☐ Medium-scale integration (MSI) have from 12-99 gates on a single chip
- □ Large-scale integration (LSI) have from 100-9999 gates on a single chip
- □ Very large-scale integration (VLSI) have from 10,000-99,999 gates on a single chip
- ☐ Ultra large-scale integration (ULSI)
 have from 100,000 and greater equivalent gates on
 a single chip

Module 1

69

http://www.visual6502.org/images/263P/S SI_263P_8404_chip1_package_top.jpg

http://www.nysemagazine.com/lsicorp

71

Integrated Circuit Technologies

Some examples of IC technologies:

- TTL (Transistor-transistor Logic)
- ECL (Emitter-Coupled Logic)
- CMOS (Complementary Metal-Oxide-Semiconductor)
- NMOS (N-Type Metal–Oxide–Semiconductor)
- BiCMOS (Bipolar and Metal-Oxide-Semiconductor)

ttp://www.creativeplanetnetwork.com/dcp/news/cm

Programmable Logic Devices (PLD)

Overview of PLD

□ Fixed function

■ A specific logic function is contained in the IC (hardwired) and can never be changed.

□ PLD

- Logic function programmed by the user.
 - ■Some, can be reprogrammed many times.
- Advantage
 - ■More logic circuit can be 'stuffed' into much smaller
 - ■Certain PLD, design can be changed without rewiring or replacing components.
 - ■Can be implemented faster once the required programming language is mastered.

73 74

Types of PLD

3 major types (SPLD, CPLD, FPGA)

- 1. Simple Programmable Logic Devices (SPLD)
 - Can replace several fixed-function SSI or MSI
 - First type available
 - A few categories
 - PAL (programmable Array Logic)
 - GAL (Generic Array Logic)
 - PLA (Programmable Logic Array)
 - PROM (Programmable Read-Only memory)

Types of PLD: CPLD

- 2. Complex Programmable Logic Devices (CPLD)
 - Much higher capacity than SPLD (2-64 SPLD)
 - More complex logic circuits can be programmed
 - Typically in 44 160 pin package

(b) 128-pin PQFP package

Types of PLD: FPGA

- 3. Field-Programmable Gate Arrays (FPGA)
 - □ Different internal organization than SPLD and CPLD
 - □ Greatest logic capacity
 - Consist of 64- thousands logic block (logic gate groups)
 - Classes
 - Fine grain (smaller logic block)
 - Coarse grain (large logic block)

77

Logic circuit entered using 2 basic method

· schematic diagram

PLD Programming

- Text-based entry (language based entry)
 - · Using Hardware Description Language (HDL)
 - · Eg . ABEL, CUPL, WinCUPL
 - Becoming widely used especially for CPLD and FPGA
 - VHDL
 - Verilog

Resource: http://upload.wikimedia.org/wikipedia/commons/thumb/f/fa/ Altera_StratixIVGX_FPGA.jpg/300px-Altera_StratixIVGX_FPGA.jpg