

SCSR1013 DIGITAL LOGIC

MODULE 8b: COUNTERS (SYNC)

2016/2017-1

FACULTY OF COMPUTING

www.utm.my

Synchronous Counters:

Synchronous Counter Design

- Step 1
 Describe a general sequential circuit in terms of its basic parts and its input and outputs.
- Step 2
 Develop state diagram
- Step 3
 Create next state table

Step 4 Create flip-flop transition table.

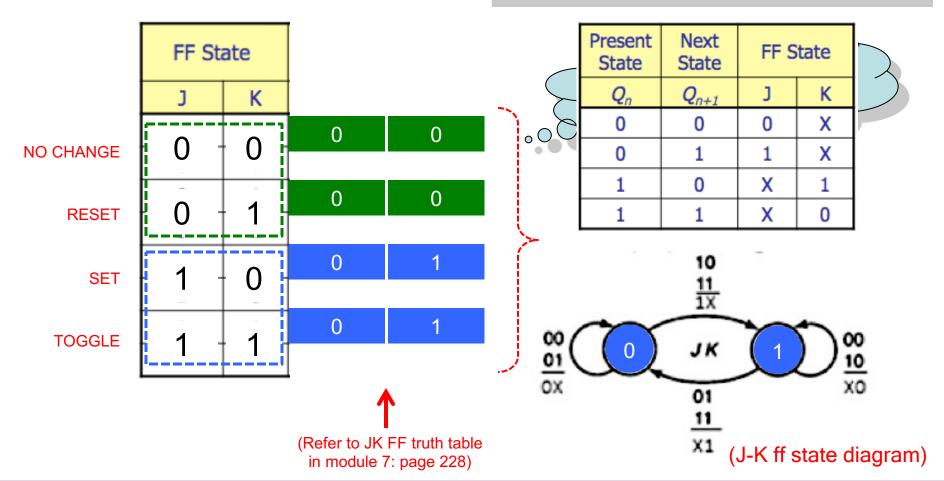
excitation table

- Step 5
 Use K-maps to derive the logic equations.
- Step 6
 Implement counter implementation

FF Excitation Table

JK Flip-Flop

About creating Next State table



Exercise 8b.1:

Construct the excitation table for **D flip-flop**

(using its state diagram)

Exercise 8b.2:

Construct the excitation table for **T flip-flop**

(using its state diagram)

Note:

These excitation tables will be used while filling in the flip-flop transition table in STEP 4 of designing synchronous counter.

Summary

Excitation tables of flip-flops:

NO CHANGE / RESET

SET / TOGGLE

RESET / TOGGLE

NO CHANGE / SET

Present State	Next State	FF State		
Q_n	Q_{n+1}	J	K	
0	0	0	X	
0	1	1	X	
1	0	X	1	
1	1	X	0	

J-K flip-flop

Q_{n+1}	D
0	0
1	1

D flip-flop

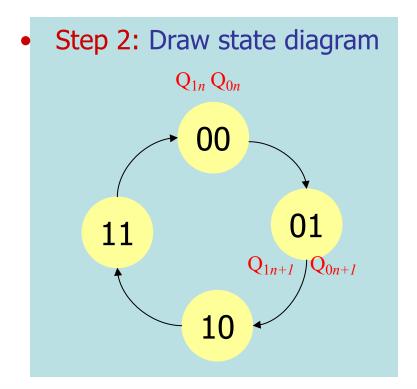
Q_{n+1}	Т
Q_n	0
$\overline{Q_n}$	1

T flip-flop

Design 2-bit Synchronous Counter:

J-K Flip-flop

 Step 1: To design 2-bit synchronous counter using JK FF. There is no input or output element in this design.



Step 3: Create next state table

Presen	t State	Next State			
Q_{1n}	Q_{0n}	Q_{1n+1}	Q_{0n+1}		
0	0	0	1		
0	1	1	0		
1	0	1	1		
1	1	0	0		

Note:

While filling in the flip-flop transition table, refer to the excitation table.

Present State	Next State	FF State		
Q_n	Q_{n+1}	J	K	
0	0	0	X	
0	1	1	X	
1	0	X	1	
1	1	X	0	

Step 4:

Construct the flip-flop transition table

FF1

FF0

Present State		Next State		JK Transition				
Q_{1n}	Q_{0n}	Q_{1n+1}	Q_{0n+1}	J_1	K_1	J_0	K_0	
0	0	0	1					
0	1	1	0					
1	0	1	1					
1	1	0	0					

Note:

While filling in the flip-flop transition table, refer to the excitation table.

Present State	Next State	FF State		
Q_n	Q_{n+1}	J K		
0	0	0	X	
0	1	1	X	
1	0	X	1	
1	1	X	0	

• Step 4:

Construct the flip-flop transition table

FF1

FF0

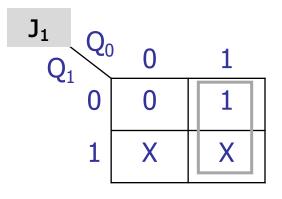
Presen	t State	Next State		JK Transition				
Q_{1n}	Q_{0n}	Q_{1n+1}	Q_{0n+1}	J_1	K_1	J_0	K_0	
0	0	0	1	0	X	1	X	
0	1	1	0	1	X	X	1	
1	0	1	1	X	0	1	X	
1	1	0	0	X	1	Х	1	

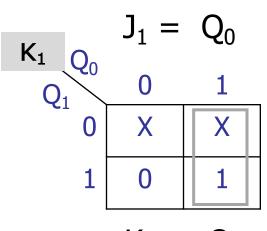
Present State Next State			JK Transition				
Q_{1n}	Q_{0n}	Q_{1n+1}	Q_{0n+1}	J_1	K ₁	J_0	K ₀
0	0			0	X	1	X
0	1			1	X	X	1
1	0			X	0	1	Χ
1	1			Χ	1	Χ	1

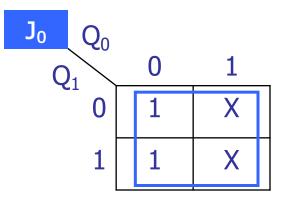
• Step 5:

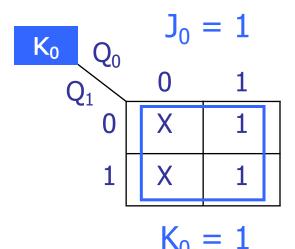
Use K-maps to derive the logic equations

(for present state only).

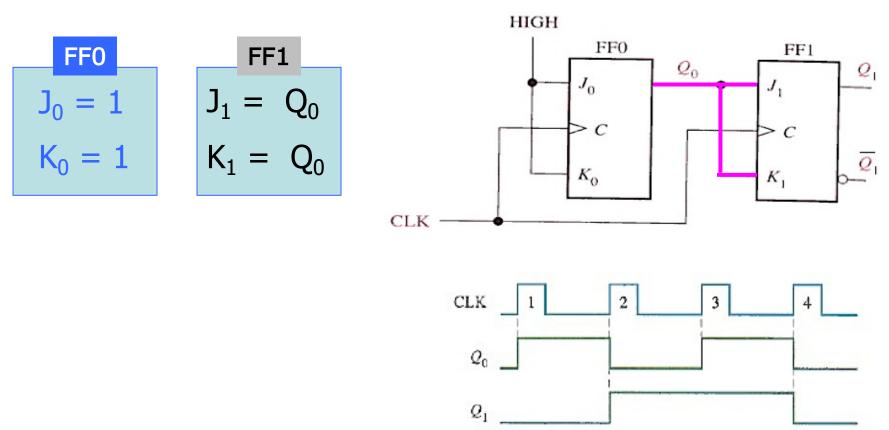








Step 6: Implement counter implementation by drawing the logic symbol connection / counter circuit.



 Q_1 toggle when $Q_0=1$

- Q₀ toggle at positive edge (CLK1, CLK2, CLK3, CLK4)
- Q₁ toggle when Q₀=1 at positive edge (CLK2, CLK4)

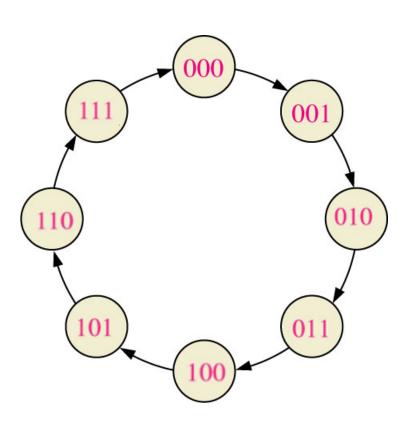
Exercise 8b.3: Design 2-bit synchronous counter that using D flip-flop. Show all steps clearly.

Exercise 8b.4: Design 2-bit synchronous counter that using T flip-flop. Show all steps clearly.

Design 3-bit Synchronous Counter:

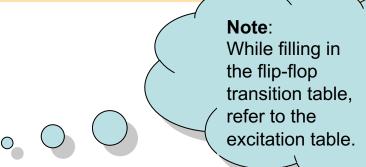
J-K Flip-flop

Step 2: State diagram



Step 3: Next State table

Present State			Next State			
Q_2	Q_1	Q_0	Q ₂₊	Q ₁₊	Q ₀₊	
0	0	0	0	0	1	
0	0	1	0	1	0	
0	1	0	0	1	1	
0	1	1	1	0	0	
1	0	0	1	0	1	
1	0	1	1	1	0	
1	1	0	1	1	1	
1	1	1	0	0	0	



Present State	Next State	FF State						
Q_n	Q_{n+1}	J	K					
0	0	0	X					
0	1	1	X	/				
1	0	X	1	1				
1	1	Χ	0	/				

• Step 4:

FF transition table

FF2

FF1

FF0

Pre	Present State			Next State			JK Transition Table				
Q_2	Q_1	Q_0	Q ₂₊	Q ₁₊	Q_{0+}	J_2	K ₂	J_1	K_1	J_0	K_0
0	0	0	0	0	1	0	X	0	X	1	X
0	0	1	0	1	0	0	X	1	X	X	1
0	1	0	0	1	1	0	X	X	0	1	X
0	1	1	1	0	0	1	X	X	1	X	1
1	0	0	1	0	1	X	0	0	X	1	X
1	0	1	1	1	0	X	0	1	X	X	1
1	1	0	1	1	1	X	0	X	0	1	X
1	1	1	0	0	0	X	1	Χ	1	Χ	1

 $K_0 =$

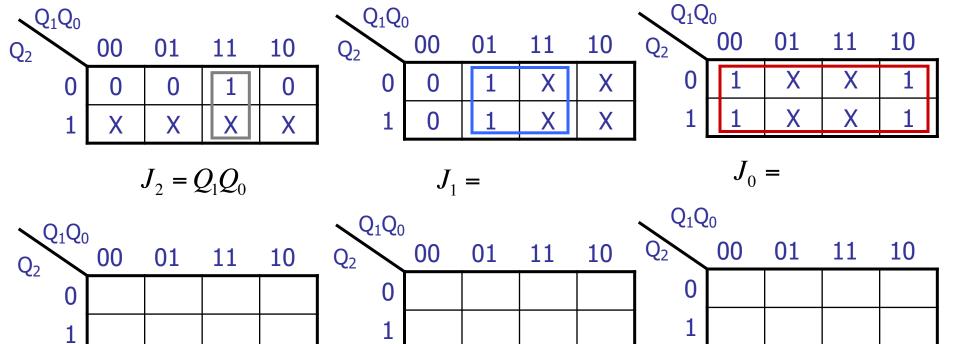
Step 5:

Create K-map to determine the Boolean expression

 $K_2 =$

Pre	Present State			e Next State		JK Transition Table					
Q_2	Q_1	Q_0	Q ₂₊	Q_{1+}	Q ₀₊	J ₂	K ₂	J_1	K ₁	J _o	K ₀
0	0	0			'	0	X	0	Х	1	X
0	0	1				0	X	1	Х	Х	1
0	1	0				0	X	X	0	1	X
0	1	1				1	X	X	1	Х	1
1	0	0				X	0	0	Х	1	X
1	0	1				X	0	1	Х	Х	1
1	1	0				X	0	Х	0	1	X
1	1	1				Χ	1	Χ	1	Х	1

(Module page: 259)

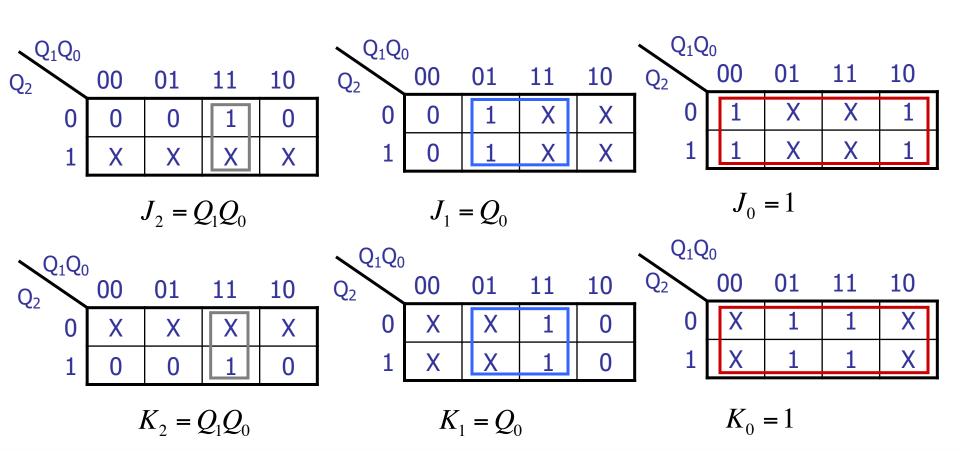


**Fill in the K-maps 17

 $K_1 =$

Step 5:

Create K-map to determine the Boolean expression



**Fill in the K-maps 18

Step 6:

The implementation of 3-bit synchronous counter

FF0

$$J_0 = 1$$

$$K_0 = 1$$

FF1

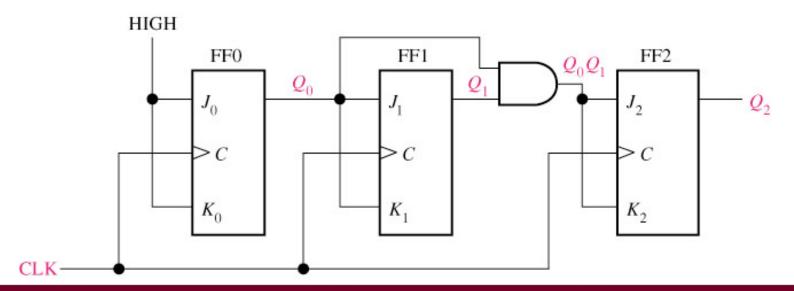
$$J_1 = Q_0$$

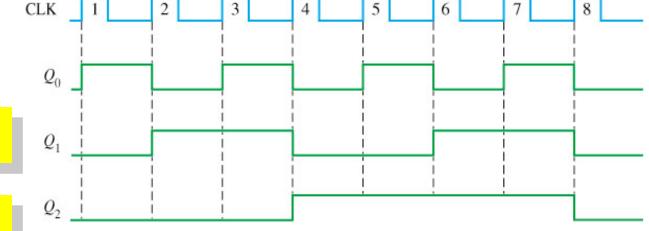
$$J_1 = Q_0$$
$$K_1 = Q_0$$

FF2

$$J_2 = Q_1 Q_0$$

$$J_2 = Q_1 Q_0$$
$$K_2 = Q_1 Q_0$$





 Q_1 toggle when $Q_0=1$

 Q_2 toggle when $Q_0 = Q_1 = 1$

Note:

Actually we can design a synchronous counter by observing its timing diagram, based on the above timing diagram:

 Q_0 always toggle. To achieve this, we have to operate FF0 in toggle mode by connecting J_0 and K_0 to HIGH Q_1 goes to opposite state every time Q_0 is HIGH (at the positive edge of clock CLK2, CLK4, CLK6 and CLK8).

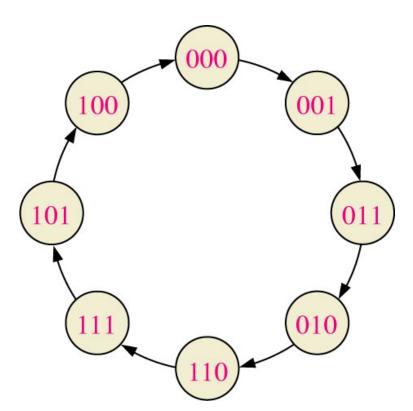
From the observation we can achieve this by connecting Q_0 to the J_1 and K_1 inputs of FF1 Q_2 changes state when both Q_0 and Q_1 is HIGH. (at the positive edge of clock CLK4 and CLK8).

From the observation we can achieve this by 'AND'ing Qo and Qt to the Jand Ka inputs of FF2

Exercise 8b.5: Design 3-bit synchronous counter that using T flip-flop. Show all steps clearly.

Exercise 8b.6: Design 4-bit synchronous counter that using J-K flip-flop with negative edge triggered. Show all steps clearly.

Exercise 8b.7: Design 3-bit synchronous counter that using J-K flip-flop based on the state diagram below. Show all steps clearly.



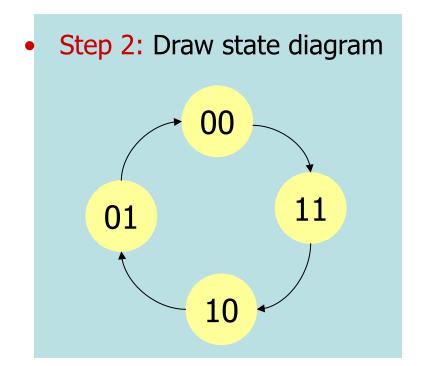
Exercise 8b.7b: Continue exercise 8b.7 by drawing the counter design.

2-bit Down Synchronous Counter:

D Flip-flop

• Step 1:

To design 2-bit down synchronous counter using D FF. There is no input or output element in this design.



Step 3: Create next state table

Presen	t State	Next State		
Q_1	Q_{0}	Q_{1+}	Q_{0+}	
0	0	1	1	
0	1	0	0	
1	0	0	1	
1	1	1	0	

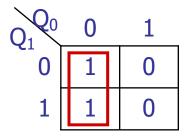
Q_{n+1}	D
0	0
1	1

Step 4:

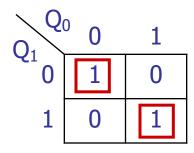
Draw flip-flop transition table. For D FF, D input is the same as the next state values.

Presen	t State	Next State		D Tra	nsition
Q_1	Q_0	Q_{1+}	Q_{0+}	D_1	D_0
0	0	1	1	1	1
0	1	0	0	0	0
1	0	0	1	0	1
1	1	1	0	1	0

• Step 5: K-Map.



$$D_0 = Q_0$$



$$D_1 = \overline{Q}_1 \overline{Q}_0 + Q_1 Q_0$$
$$D_1 = Q_0 \odot Q_1$$

Exercise 8b.8: Draw the circuit for of 2-bit down synchronous counter using D FF with $D1 = Q0 \odot Q1$ and $D0 = \overline{Q0}$

(Refer previous example: module page 262)

2-bit UP/DOWN Synchronous Counter:

D Flip-flop

• Step 2:
Given the state diagram.

0
0
0
0
1
1
1
1
1
1

Step 3: Create next state table

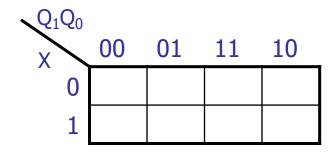
	Inp		Presen	t State	Next State												
		Х	$Q1_n$	Q_0	$Q1_{n+1}$	<i>Q</i> 0 _{n+1}											
Q	ر ا	0	0	0	0	1											
n t n		0	0	1	1	0											
Count up		0	1	0	1	1											
ပ 		0	1	1	0	0											
M	$ \Gamma $	1	0	0	1	1											
ф _						Ы							1	0	1	0	0
Count down		1	1	0	0	1											
Col	ᅵ	1	1	1	1	0											

• Step 4:

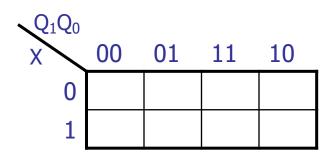
D FF transition table and determine Boolean expression.

Input,	Presen	t State	Next	State	D FF	
X	Q 1 _n	Q 0 _n	$Q1_{n+1}$	Q 0 _{n+1}	D1	D0
0	0	0	0	1	0	1
0	0	1	1	0	1	0
0	1	0	1	1	1	1
0	1	1	0	0	0	0
1	0	0	1	1	1	1
1	0	1	0	0	0	0
1	1	0	0	1	0	1
1	1	1	1	0	1	0

Step 5: Implement the circuit.

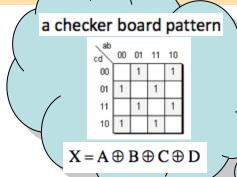


$$D_1 =$$



$$D_0 =$$

(Module page: 152)



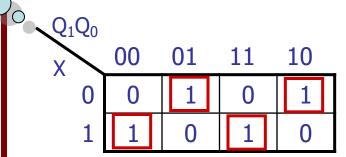
• Step 4:

D FF transition table.

Input,	Presen	t State	Next	State	D FF	
X	Q 1 _n	Q 0 _n	$Q1_{n+1}$	Q 0 _{n+1}	D1	D0
0	0	0	0	1	0	1
0	0	1	1	0	1	0
0	1	0	1	1	1	1
0	1	1	0	0	0	0
1	0	0	1	1	1	1
1	0	1	0	0	0	0
1	1	0	0	1	0	1
1	1	1	1	0	1	0

• Step 5:

Define logic equation.



$$D_1 = X \oplus Q_1 \oplus Q_0$$

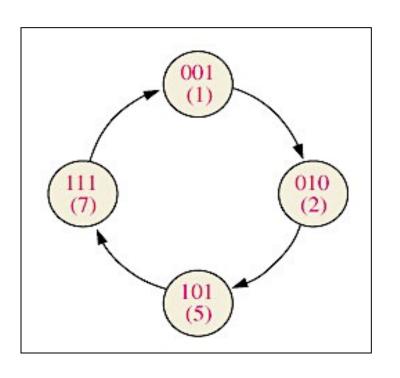
$$D_0 = \overline{Q}_0$$

Exercise 8b.9: Draw the circuit for of 2-bit up-down synchronous counter using D FF with $D_1 = X \oplus Q_1 \oplus Q_0$ and $D_0 = \overline{Q}_0$

(Refer previous example: module page 261)

Counter for Arbitrary Sequences

Design the counter base on the given state diagram using T FF.

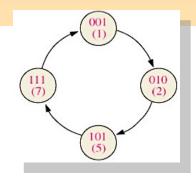


- •The counter is 3-bit counter
- •The total number state = $2^3 = 8$
- •Only 4 state (1, 2, 5, 7)

 → Valid State
- •Other states (0, 3, 4, 6)

 → Invalid State

 (never occur /don't care)



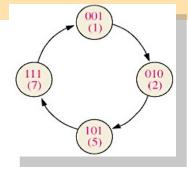
State table and T FF transition table.

Pro	esent Sta	ate	N	Next State			T FF		
Q 2 _n	Q 1 _n	Q 0 _n	Q2 _{n+1}	$Q1_{n+1}$	Q 0 _{n+1}	T2	T1	TO	
0	0	0	X	X	X	X	X	X	
0	0	1	0	1	0	0	1	1	
0	1	0							
0	1	1							
1	0	0							
1	0	1							
1	1	0							
1	1	1							

• Derive the Boolean expression and draw the circuit diagram.

**Fill in the next state and T FF transition column

Q_{n+1}	Т
Q_n	0
$\overline{Q_n}$	1



State table and T FF transition table.

FF2

FF1

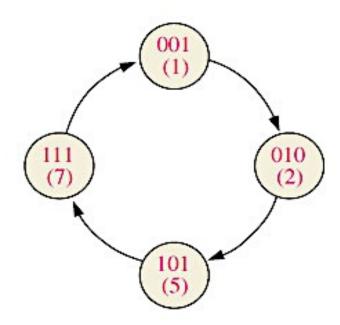
FF0

Pro	esent Sta	ate	N	Next State			T FF	
Q 2 _n	Q 1 _n	Q 0 _n	Q 2 _{n+1}	$Q1_{n+1}$	Q 0 _{n+1}	T2	T1	TO
0	0	0	X	X	X	X	X	X
0	0	1	0	1	0	0	1	1
0	1	0	1	0	1	1	1	1
0	1	1	X	X	X	X	X	X
1	0	0	X	X	X	X	X	X
1	0	1	1	1	1	0	1	0
1	1	0	Х	X	X	Х	X	X
1	1	1	0	0	1	1	1	0

Derive the Boolean expression and draw the circuit diagram.

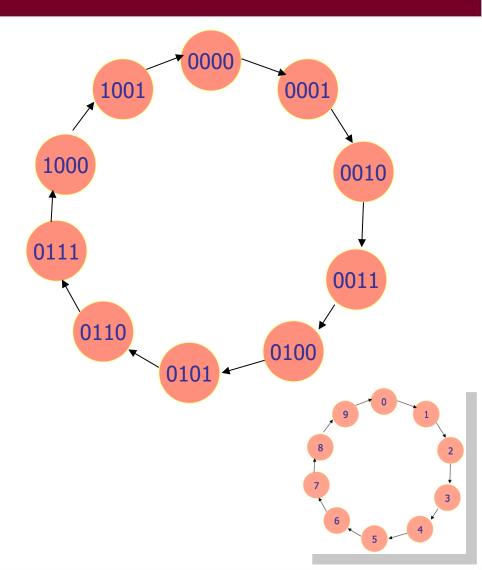
Exercise 8b.10: Derive the Boolean expression and draw the circuit diagram from the previous example.

Exercise 8b.11: Design a counter with the irregular binary count sequence shown in the state diagram below using JK FF.



Synchronous BCD Decade Counter

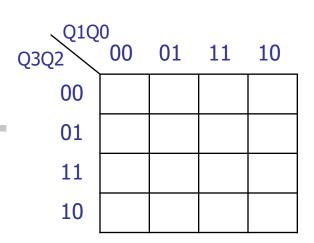
- Synchronous decade counter counts from 0 to 9 and then recycles to 0 again.
- 4 FF is required and the unused states ie 10 to 15 are taken as don't care terms.

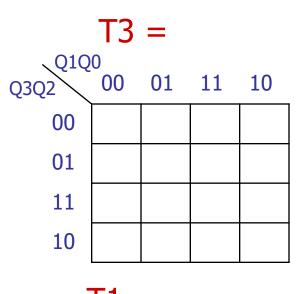


Present State					Next	State		1	1		
Q3	Q2	Q1	Q0	Q3 +	Q2 ₊	Q1 ₊	Q0 ₊	Т3	T2	T1	T0
0	0	0	0	0	0	0	1	0	0	0	1
0	0	0	1	0	0	1	0	0	0	1	1
0	0	1	0	0	0	1	1	0	0	0	1
0	0	1	1	0	1	0	0	0	1	1	1
0	1	0	0	0	1	0	1	0	0	0	1
0	1	0	1	0	1	1	0	0	0	1	1
0	1	1	0	0	1	1	1	0	0	0	1
0	1	1	1	1	0	0	0	1	1	1	1
1	0	0	0	1	0	0	1	0	0	0	1
1	0	0	1	0	0	0	0	1	0	0	1
1	0	1	0	X	X	X	X	X	X	X	Х
1	0	1	1	X	X	X	X	X	X	X	X
1	1	0	0	X	X	X	X	Χ	X	X	X
1	1	0	1	X	X	X	X	X	X	X	X
1	1	1	0	X	X	X	X	X	X	X	X
1	1	1	1	Χ	Χ	Χ	Χ	Χ	Χ	X	X

Self-Test:

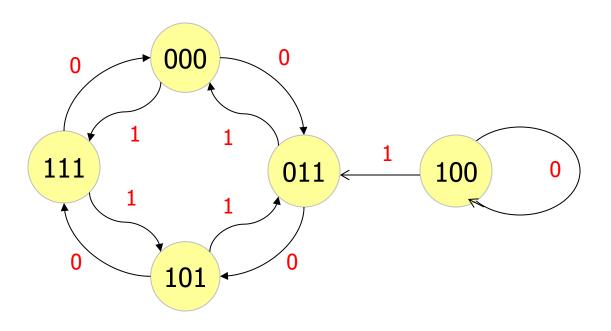
Fill in the k-map to simplify the equations.





Q1Q Q3Q2	0 00	01	11	10							
00											
01											
11											
10											
Q10 Q3Q2	T2 = Q1Q0 $Q3Q2$ 00 01 11 10										
00											
01											
11											
10											
10											

Exercise 8b.12: Design a synchronous counter with the irregular binary count sequence shown in the state diagram below using J-K FF.



www.utm.my

Cascaded Counter

Recap: Modulus

- The modulus

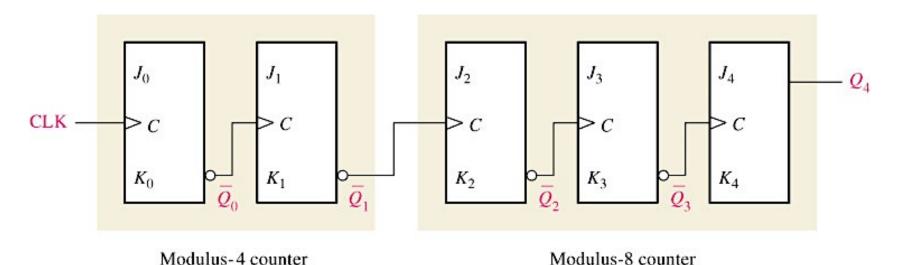
 number of unique states through which the counter will sequence.
- Maximum possible number of states = 2^N , N is the number of flip-flops in the counter.
 - Example : Modulus 8 = 2³ (Need 3 flip flops)
- - One common modulus for counters → ten (Modulus 10).
 - It called BCD decade counters (as explained in previous slides).

Cascaded Counter

- Counter can be connected to achieve higher modulus operation.
- Cascading means that the last-stage output of one counter drives the input of the next counter.

Example:

• Two counters, modulus-4 and modulus-8 connected in cascade, can achieve count until 32 CLK (modulus-32). (i.e 4 x 8)

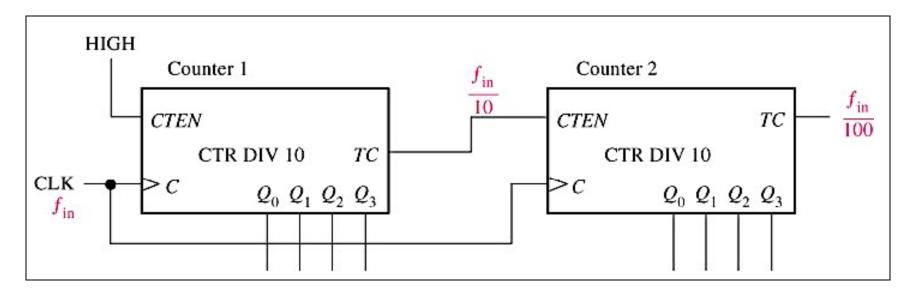


44

Cascaded Counter:

Modulus-100 Counter

- Modulus-100 counter using 2 cascaded decade counters.
- This counter can be viewed as a frequency divider.
- It divides the input clock frequency by 100.

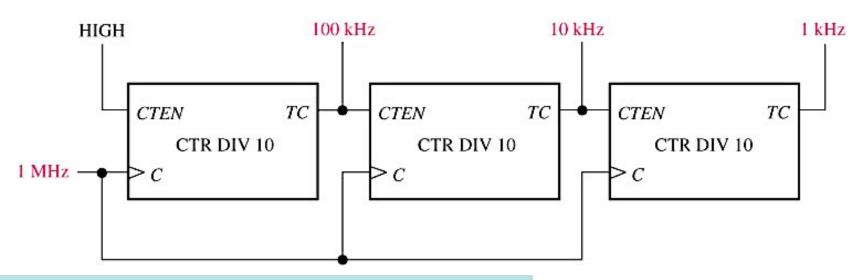


 $(Total\ MOD = 10 \times 10 = 100)$

Cascaded Counter:

Modulus-1000 Counter

Three cascaded decade counters forming a divide-by-1000 frequency divider.



Basis clock frequency of 1 MHz and you wish to obtain 100kHz, 10Hz, and 1kHz, a series of cascaded decade counters can be used. If 1 MHz signal is divided by 10, the output is 100kHz. Then if the 100 kHz signal is divided by 10, the output is 10kHz. Further division by 10 gives the 1 kHz frequency.

Total MOD =
$$10 \times 10 \times 10$$

= 1000

Exercise 8b.13: Two type of counters, modulus-4 and modulus-8 need to be used to achieve count up to modulus-*n* (*n* CLK).

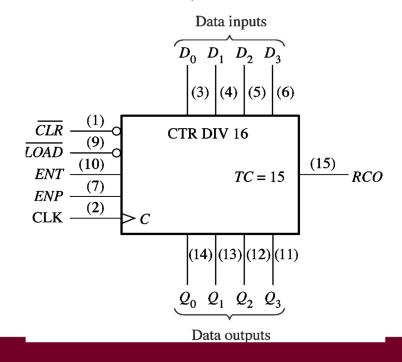
- a) How to cascade the counters to achieve count until 32 CLK (modulus-32)?
- b) What is the frequency produced by each counter given an initial frequency as 800MHz?

74HC163:

4-Bit Synchronous Binary Counter

www.utm.my

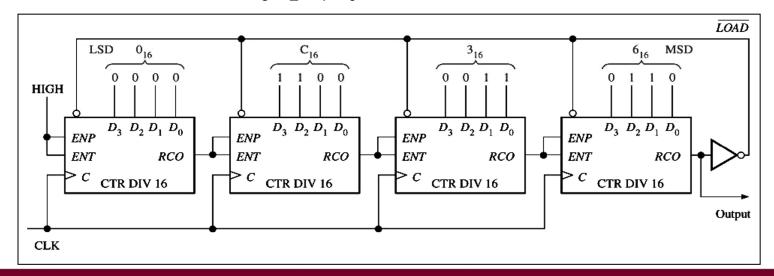
- There is a dedicated counter IC, e.g 74HC163 which is a MOD 16 counter IC
- The starting counting sequence can be change by setting the initial value at D₃D₂D₁D₀
 - To load the initial value, LOAD' must be 0



Cascaded Counter with Truncated Sequence

www.utm.my

- The cascaded counter below has 16⁴ = 65,536 states (full modulus for four cascaded CTR DIV 16).
- If we need a modulus 40,000 counter only. So, how?
 - Determine the initial value : 65536-40000 = 25536 (63C0₁₆)
 make the counter starts at this count.
 - 2. Therefore preset the cascaded counter to $63C0_{16}$ by setting the value of $D_3D_2D_1D_0$ as shown below.

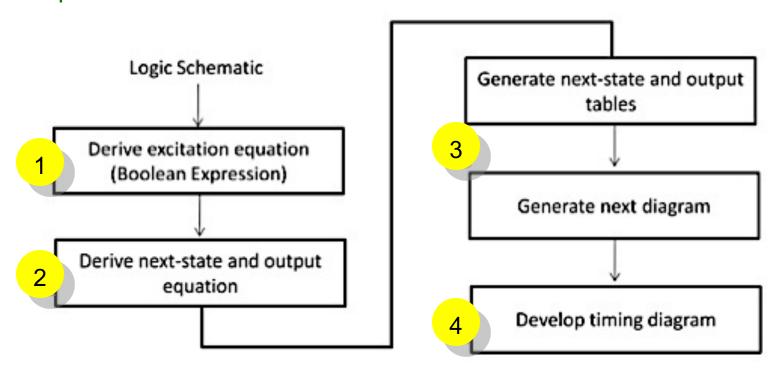


www.utm.my

Analysis of Sequential Circuits

Analysis of Sequential Circuits

- Behavior of a sequential circuit is determined from the inputs, the outputs and the states of its flip-flops.
- Both the output and the next state are a function of the inputs and the present state.



• Step 1:

Start with the logic schematic from which we can derive **excitation equations** for each flip-flop input.

• Step 2:

To obtain **next-state equations**, we insert the excitation equations into the characteristic equations. The **output equations** can be derived from the schematic:

Flip-flop characteristic equation:

active HIGH SR :
$$Q_{next} = S + \overline{R}Q$$
, SR = 0

$$JK : Q_{next} = J\overline{Q} + \overline{K}Q$$

$$D : Q_{next} = D$$

$$T : Q_{next} = T\overline{Q} + \overline{T}Q$$

Step 3:

Once we have our output and next-state equations, we can generate the **next-state and output tables** as well as **state diagrams**.

Step 4:

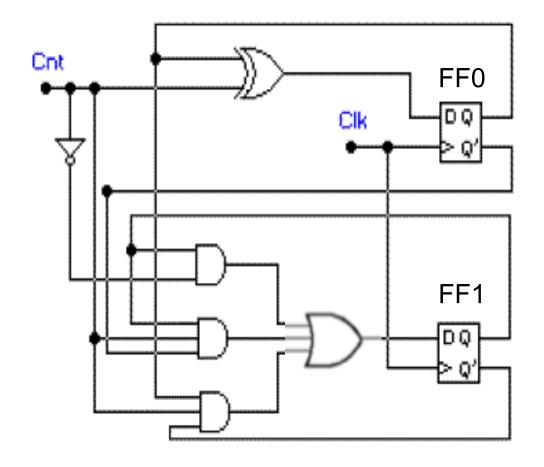
When we reach this stage, we use either the table or the state diagram to develop a **timing diagram** which can be verified through simulation.

Analysis of Sequential Circuits:

Method 1: Modulo-4 Counter

Example:

Derive the state table and state diagram for the sequential circuit below. Use Method 1



active HIGH SR :
$$Q_{next} = S + \overline{R}Q$$
, SR = 0
$$JK : Q_{next} = J\overline{Q} + \overline{K}Q$$

$$D : Q_{next} = D$$

$$T : Q_{next} = T\overline{Q} + \overline{T}Q$$

 Step 1: Boolean expressions for the inputs of each flip-flops in the schematic.

$$\begin{split} D_0 &= Cnt \oplus Q_0 = \overline{Cnt} \bullet Q_0 + Cnt \bullet \overline{Q}_0 \\ D_1 &= \overline{Cnt} \bullet Q_1 + Cnt \bullet \overline{Q}_1 \bullet Q_0 + Cnt \bullet Q_1 \bullet Q_0 \end{split}$$

 Step 2: Derive the next-state equations by converting these excitation equations into flip-flop characteristic equations. In the case of D flip-flops, Q₊ = D.

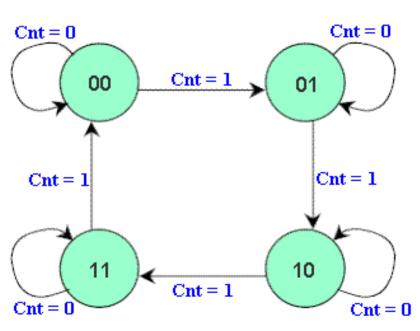
$$\begin{split} Q_{0+} &= D_0 = Cnt \oplus Q_0 = \overline{Cnt} \bullet Q_0 + Cnt \bullet \overline{Q}_0 \\ Q_{1+} &= D_1 = \overline{Cnt} \bullet Q_1 + Cnt \bullet \overline{Q}_1 \bullet Q_0 + Cnt \bullet Q_1 \bullet Q_0 \end{split}$$

$$\begin{split} Q_{0+} &= D_0 = Cnt \oplus Q_0 = \overline{Cnt} \bullet Q_0 + Cnt \bullet \overline{Q}_0 \\ Q_{1+} &= D_1 = \overline{Cnt} \bullet Q_1 + Cnt \bullet \overline{Q}_1 \bullet Q_0 + Cnt \bullet Q_1 \bullet Q_0 \end{split}$$

Step 3: Construct the next-state table.

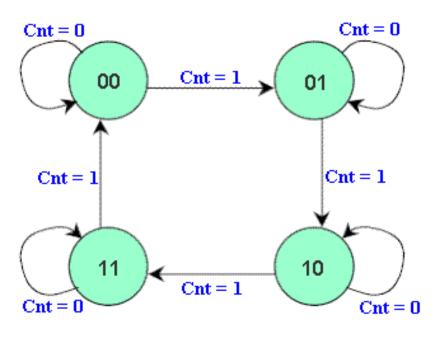
Input,	Present	State	Next State			
Cnt	Q_1	Q_0	$Q_{1+} = D_1$	$Q_{0+} = D_0$		
0	0	0	0	0		
0	0	1	0	1		
0	1	0	1	0		
0	1	1	1	1		
1	0	0	0	1		
1	0	1	1	0		
1	1	0	1	1		
1	1	1	0	0		

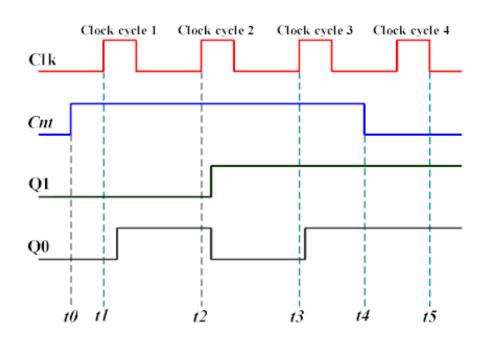
- Step 4:
- The state diagram is generated directly from the next-state table.

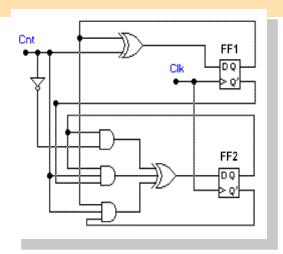


Input,	Present	State	Next State			
Cnt	Q_1	Q_0	$Q_{1+} = D_1$	$Q_{0+} = D_0$		
0	0	0	0	0		
0	0	1	0	1		
0	1	0	1	0		
0	1	1	1	1		
1	0	0	0	1		
1	0	1	1	0		
1	1	0	1	1		
1	1	1	0	0		

- Step 4:
- The state diagram is generated directly from the next-state table.
- Next get the timing diagram







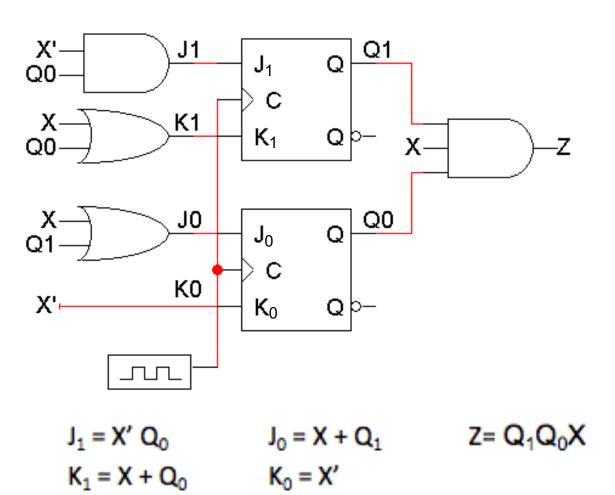
We can conclude:

- a) From the counter circuit:
 - 2- bit counter because there are 2 FFs in the design.
 - Sycnhronous counter because the FFs have a common clock.
- b) From the counter state diagram:
 - MOD 4 because has 4 state (i.e. 2²=4), not a truncated counter.
 - Count Up counter when Cnt=1, and stay in the previous state when Cnt=0.

Analysis of Sequential Circuits:

Method 2: JK Circuit Analysis

 Sequential circuit with two JK flipflops. There is one input, X, and one output, Z.
 Use Method 2



$$J_1 = X' Q_0$$
 $J_0 = X + Q_1$ $Z = Q_1Q_0X$
 $K_1 = X + Q_0$ $K_0 = X'$

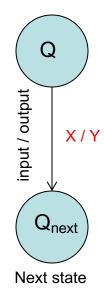
Input,	Present State		Next State			Output,			
X	Q_1	Q_0	Q ₁₊	Q ₀₊	J_1	K ₁	J ₀	K ₀	Z
0	0	0			0	0	0	1	0
0	0	1			1	1	0	1	0
0	1	0			0	0	1	1	0
0	1	1			1	1	1	1	0
1	0	0			0	1	1	0	0
1	0	1			0	1	1	0	0
1	1	0			0	1	1	0	0
1	1	1			0	1	1	0	1

Input,	Present State		Next State			Output,			
X	Q_1	\mathbf{Q}_{0}	Q ₁₊	Q ₀₊	J ₁	K ₁	J _o	K ₀	Z
0	0	0	0	0	0	0	0	1	0
0	0	1	1	0	1	1	0	1	0
0	1	0	1	1	0	0	1	1	0
0	1	1	0	0	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0
1	0	1	0	1	0	1	1	0	0
1	1	0	0	1	0	1	1	0	0
1	1	1	0	1	0	1	1	0	1

^{**}Fill in the next state column

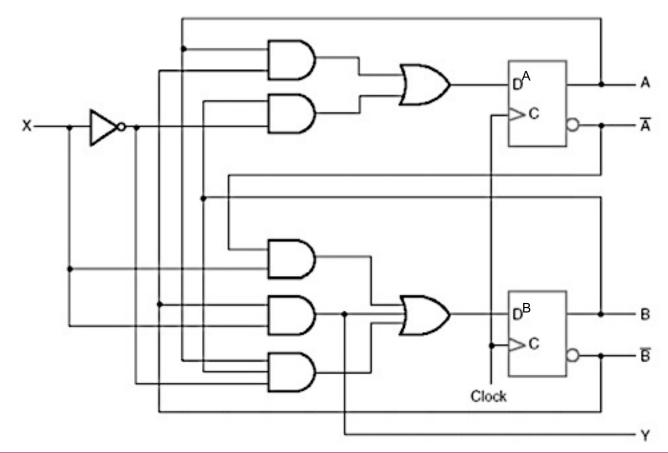
Draw the state diagram for the example in previous slide.

Present state



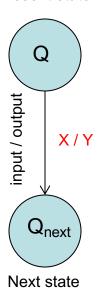
Extera

Exercise 8b.15: Analysis for the following sequential circuit. Use Method 1.



Exercise 8b.15: Draw the state diagram for the example in previous slide.

Present state



Input,	Presen	t State	Next	Output,	
X	A	В	A ₊	B ₊	Y
0	0	0	0	0	0
0	0	1	1	0	0
0	1	0	1	0	0
0	1	1	1	1	0
1	0	0	0	1	1
1	0	1	0	1	0
1	1	0	1	1	1
1	1	1	0	0	0

